Pressure and temperature effects for Ormen Lange ultrasonic gas flow meters

Per Lunde and Kjell-Eivind Frøysa

Christian Michelsen Research AS (CMR), Bergen

NFOGM Temadag, Rica Grand Hotel, Oslo, March 16, 2007

Norwegian Society of Oil and Gas Measurement (NFOGM)

CMC Instrumentation

Contents

- Introduction
- Analysis methods for P&T effects on:
 - Cross-sectional area
 - Ultrasonic path geometry (angles & chord positions)
 - Transducer ports
- (length) (length)
- Ultrasonic transducers
- Reynolds number correction
- Results
- Recommended P&T correction method
- Conclusions

Introduction Introduction

Ormen lange ultrasonic fiscal gas metering station

CMC Instrumentation

Ormen lange ultrasonic fiscal gas metering station

- Location: Nyhamna, Møre and Romsdal, Norway
- 3 parallel runs, with 5 ultrasonic gas flow meters (USMs):
 - 2 parallel runs with 2 18" USMs in series (ID = 366.5 mm)
 - 1 parallel run with 1 18" USM, for measurement at maintenance (ID = 366.5 mm)
- Flow conditioner: K-Lab / Laws type
- USM: Elster Instromet Ultrasonics Q-Sonic 5

	Spe	ecifi	catio	ons	
	Weste calibration	erbork f			ange line conditions etering station) (nominal)
Gas	Dry natu	ral gas		Dry natur	ral gas
Pressure	63 barg			230 barg	
Temperature	7 °C			40 °C	
Viscosity	1.30·10 ⁻⁵	Pa-s		2.28·10 ⁻⁵	Pa-s
Density	57.36 kg/	m³		186.6 kg/	m ³
Flow velocity	1.5 – 19 r	n/s		15 - 16 m	/s
Reynolds number	2.4·10 ⁶ –	3.0·10 ⁷		4.5·10 ⁷	
//*/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\Lambda \Lambda$	AN	$\mathcal{F} $		CMC Instrumentati

Objective

On behalf of Hydro, on a request from NPD, and in a close dialogue with Shell, CMR has undertaken a study with objective to:

Establish correction factor(s) for pressure and temperature effects on the 18" Q-Sonic 5 ultrasonic flow meters, from Westerbork flow calibration conditions, to Ormen Lange line conditions.

The correction factor is to account for:

	Direct P&T effect	Indirect P&T effect
Α	Change of the meter body cross-sectional area	Affects amount of gas flowing through the flow meter
В	Change of the ultrasonic path geometry (changed inclination angles and lateral chord positions, caused by diameter change & changed transducer port orientation)	
С	Change of the length of the ultrasonic transducer ports	Affects acoustic path lengths and thus transit times.
D	Change of the length of the ultrasonic transducers	Affects acoustic path lengths and thus transit times.
E	Change of the Reynolds number	Influences on the numerical integration method.

The correction factor is to be implemented in the flow computer, not in the ultrasonic flow meter

P & T effects on USM meter body: Analytical model A

$$q_{USM} = 2\pi R^2 \sum_{i=1}^{N} w_i \frac{(N_{refl,i} + 1)\sqrt{R^2 - y_i^2}(t_{Ii} - t_{2i})}{t_{Ii}t_{2i} / \sin 2\phi_i /}$$

where

$$R \approx K_T K_P R_0$$

$$y_i \approx K_T K_P y_{i0}$$

$$\phi_i \approx tan^{-1} \left(\frac{tan(\phi_{i0})}{1 - (1 - \frac{\beta^*}{\beta})(K_P - 1)} \right)$$

$$K_T \equiv I + \alpha \Delta T_{dry}$$
 $\Delta T_{dry} = T - T_0$
 $K_P \equiv I + \beta \Delta P_{dry}$ $\Delta P_{dry} = P - P_0$

 α = thermal expansion coefficient of meter body material

 β = radial pressure expansion coefficient of meter body material

 β^* = axial pressure expansion coefficient of meter body material

 $K_T = radial$ temperature correction factor of meter body material

 $K_P = radial$ pressure correction factor of meter body

 R_0 = meter body radius at dry calibration conditions

 y_{i0} = lateral chord position at dry calibration conditions

 ϕ_{io} = inclination angle at dry calibration conditions

 T_0 = gas temperature at dry calibration conditions

 P_0 = gas pressure at dry calibration conditions

Ref.: Handbook of uncertainty calculations, Ultrasonic fiscal gas metering stations, NFOGM, NPD, CMR (2001)

CMC Instrumentation

P & T effects on USM meter body: Analytical model B

Less accurate model (OK for angles $\phi_i = \pm 45^\circ$):

$$q_{USM} \approx q_{USM,0} C_{tsm} C_{psm}$$

where

$$C_{tsm} = K_T^3 = (1 + \alpha \Delta T)^3 \approx 1 + 3\alpha \Delta T$$

$$C_{psm} = K_P^3 = (1 + \beta \Delta P)^3 \approx 1 + 3\beta \Delta P$$

Ref.: Handbook of uncertainty calculations, Ultrasonic fiscal gas metering stations, NFOGM, NPD, CMR (2001)

Radial and axial pressure expansion coefficients

Various analytical models for meter body pressure expansion (for thin wall, $w/R_0 < 0.1$)

(a) Cylindrical pipe section model (ends free):

$$\beta = \frac{R_0}{wY}$$

$$\beta^* = -\frac{R_0 \sigma}{Y_W}$$

$$\frac{\beta^*}{\beta} = -\sigma$$

Used for Ormen

(b) Infinite cylindrical pipe model (ends clamped):

$$\beta = \frac{R_0}{wY} \left(1 - \frac{\sigma}{2} \right)$$

$$\beta^* = 0 \qquad \frac{\beta^*}{\beta} = 0$$

(c) Cylindrical tank model (ends capped):

$$\beta = \frac{R_0}{wY} \left(1 - \frac{\sigma}{2} \right) \qquad \beta^* = \frac{R_0}{Y_W} \left(\frac{1}{2} - \sigma \right) \qquad \frac{\beta^*}{\beta} = \frac{1 - 2\sigma}{2 - \sigma}$$

$$\beta^* = \frac{R_0}{Y_W} (\frac{1}{2} - \sigma)$$

$$\frac{\beta^*}{\beta} = \frac{1 - 2\sigma}{2 - \sigma}$$

w = average wall thickness of meter body

Y =Young's modulus (modulus of elasticity) of meter body material

 σ = Poisson's ratio of meter body material

CONC Instrumentation

Radial and axial pressure expansion coefficients

Various analytical models for meter body pressure expansion (for thin wall, $w/R_0 < 0.1$)

- Model (a): Relevant for thin-walled spoolpiece mounted in pipe section where ends can move relatively freely (displacement ~ sub-mm), e.g. with U-bend as part of the pipe section
 - → Most relevant here, of these three
- Model (b): Relevant for thin-walled spoolpiece mounted in pipe section where ends can not move (clamped), such as straight and very long ("infinite") pipe sections
 - → Not relevant here
- Model (c): Pressure tank model, relevant for thin-walled spoolpiece with blind flanges
 - → Not relevant here

Radial and axial pressure expansion coefficients

Models in use for β and β^* by Standards & gas USM manufacturers:

Reference / USM manufacturer	Models for the coefficient of linear radial pressure expansion, β	USM meter body assumptions
[AGA-9, 1998], [Roark, 2001, p. 592]	$\beta = \frac{R_o}{wY}$	Cylindrical pipe section model (ends free) Thin wall, $w < R_0/10$
Daniel Industries [Daniel, 1996, 2001]	$\beta = \frac{1}{Y} \frac{1.3(R_o + w)^2 + 0.4R_o^2}{(R_o + w)^2 - R_o^2}$ $(\beta \approx 0.85 \frac{R_o}{wY} \text{ for } w << R_0)$	 Cylindrical tank model (pipe with ends capped) Thick wall Steel material (σ = 0.3)
FMC Kongsberg Metering [Kongsberg, 2001], [Roark, 2001, p. 593]	$\beta = \frac{R_o}{wY} \left(1 - \frac{\sigma}{2} \right)$ $(\beta = 0.85 \frac{R_o}{wY} \text{ for } \sigma = 0.3 \text{ (steel)})$	 Cylindrical tank model (pipe with ends capped) ¹ Thin wall, w < R₀ /10
Instromet [Autek, 2001]	No <i>P</i> or <i>T</i> correction used. Pressure expansion analysis based on: $\beta = 0.5 \frac{R_0}{wY}$	Infinitely long pipe model (ends clamped, no axial displacement) Radial expansison assumed to be = 0.5 · radial expansion for endsfree model Thin wall, w < R ₀ /10
ISO/CD 17089 [Draft V15, April 2006]	$\beta = \frac{1}{3} \frac{3D_0}{4wY} = 0.5 \frac{R_0}{wY}$	 Flanged-in meter body Thin wall, w < R₀ /10 (?)
ISO/CD 17089 [Draft V15, April 2006]	$\beta = \frac{1}{3} \frac{7D_0}{4wY} = \frac{7}{6} \frac{R_0}{wY} = 1.17 \frac{R_0}{wY}$	 Welded-in meter body Thin wall, w < R₀ /10 (?)

Not relevant

Not documented, no traceability

Transducer ports, FEM analysis of P & T expansion

Flow calibration (Westerbork) \rightarrow Operation (Ormen Lange)

7 °C / 63 barg \rightarrow 40 °C / 230 barg Difference: 33 °C / 167 bar

Difference: 93 C7 107 bar

FEM analysis: Expansion transducer port:

	Westerbork [mm]	Ormen Lange [mm]	Differanse [mm]
1A	237.9642	238.0722	0.1080
1B	237.9641	238.0717	0.1076
2A	237.9821	238.1364	0.1543
2B	237.9864	238.1522	0.1658
3A	237.9677	238.0849	0.1172
3B	237.9685	238.0877	0.1192
4A	237.9809	238.1320	0.1511
4B	237.9848	238.1462	0.1614
5A	237.9627	238.0665	0.1038
5B	237.9634	238.0691	0.1057

Analysis of P&T effects on: Ultrasonic transducers

		Change	Effect
Factory →	Pressure increase, 0 – 63 barg	-0.0336 mm	Compression
Westerbork:	Temperature decrease, 20 - 7 °C	-0.0766 mm	Compression
Factory >	Pressure increase, 0 – 230 barg	-0.1225 mm	Compression
Ormen Lange:	Temperature decrease, 20 – 40 °C	+0.1179 mm	Expansion
Westerbork →	Pressure increase, 63 – 230 barg	-0.0889 mm	Compression
Ormen Lange:	Temperature decrease, 7 – 40 °C	+0.1945 mm	Expansion
	Total PT effect:	+0.1056 mm	Expansion

Reynolds number correction analysis Princeton Based on measured axially Melbourne (rough and smooth) symmetric flow profiles: Erlangen-Nürnberg $(Re = 7000 - 35.10^6)$ Laufer **Example:** GARUSO - simulations for Princeton Superpipe experiment flow velocity profiles, Re = 32 000 - 35 000 000 1.2 Average flow velocity over the acoustic path (normalized) 0.8 0.6 0.4 0.2 0 0 0.5 0.6 0.9 Lateral chord position, y/R **CMC** Instrumentation

Actual Reynolds numbers, Westerbork and Ormen Lange

$$Re = \frac{vD\rho}{\mu}$$

WESTERBORK

- Flow velocity: 1.5 19 m/s
- Viscosity: 1.30 · 10⁻⁵ Pa s
- Density: 57.36 kg/m³
- ID: 366.5 mm
- Re = $2.4 \cdot 10^6 3.0 \cdot 10^7$

ORMEN LANGE

- Flow velocity: 15 m/s
- Viscosity: 2.28 · 10⁻⁵ Pa s
- Density: 186.60 kg/m³
- ID: 366.5 mm
- Re = $4.5 \cdot 10^7$

P&T effects on USM

from

Westerbork (flow calibration, 63 barg, 7 °C) to

Ormen Lange (field operation, 230 barg, 40 °C):

Spoolpiece radius: 0.14 mm (expansion)

Inclination angles: 0.01°

Interrogation length: 0.6 mm (expansion)

Axial distance: 0.07 – 0.17 mm (expansion)

Transducer ports: 0.10 – 0.17 mm (expansion)

Ultrasonic transducers: 0.10 mm (expansion)

EMC Instrumentation

Contributions to measurement error – Ormen Lange

Contributing factor to measurement error, due to pressure and temperature changes	Path no.	Contribution to error	Integrated contribution to error (all 5 paths)	Combined contribution to error
Cross-sectional area and acoustic path geometry	1	+ 0.272 %	+ 0.246 %	+ 0.246 %
(inclination angles & lateral chord positions),	2	+ 0.242 %		
effect on paths 1-5:	3	+ 0.264 %		
	4	+ 0.241 %		
	5	+ 0.270 %		
Expansion transducer ports, effect on paths 1-5:	1	+ 0.055 %	+ 0.057 %	
	2	+ 0.058 %		
	3	+ 0.061 %		
	4	+ 0.057 %		
	5	+ 0.054 %		
Expansion transducers, effect on paths 1-5:	1	- 0.054 %	- 0.041 %	
	2	- 0.038 %		
	3	- 0.047 %		
	4	- 0.033 %		
	5	- 0.047 %		
Combined integrated effect, expansion transducer ports & expansion transducers, all 5 paths:	•			+ 0.017 %
Reynolds number correction (assumed deviation from Instromet Reynolds number correction):				0 %
Combined effect, total (%)				+0.262 %

Correction model for P&T effects – Ormen Lange

Proposed correction:

Measured volumetric flow rate at Ormen Lange line conditions Output volumetric flow rate from USM

Correction factor established under flow calibration at Westerbork (flow dependent)

Nominal PT correction factor, for change from Westerbork to Ormen Lange conditions (nominal):

- Changed cross-section (FEM)
- Changed acoustic path geometry (FEM)
- Expansion transducer ports (FEM)
- Expansion transducers (FEM)
- Reynolds number correction

Instantaneous PT correction factor, for instantaneous (small) changes of Ormen

- Changed cross-section,
- Changed acoustic path geometry, using the simplified analytical model B

Lange line conditions (re. nominal):

CMC Instrumentation

Correction model for P&T effects – Ormen Lange

Nominal PT correction factor:

$$C_{W-OL}^{PT-nom} = 1 + 0.262\% = 1.00262$$

Instantaneous PT correction factor:

$$C_{OL}^{PT-inst} = (1 + 3\alpha\Delta T)(1 + 3\beta\Delta P)$$

Analytical model B

where

$$\Delta T = \left(T_{OL}^{inst} - T_{OL}^{nom}\right) - \left(T_{cal}^{new} - T_{cal}^{old}\right)$$
 $\Delta P = \left(P_{OL}^{inst} - P_{OL}^{nom}\right) - \left(P_{cal}^{new} - P_{cal}^{old}\right)$

Line conditions

Flow calibration conditions

and

$$\beta = \frac{R_0}{wY}$$
 Radial pressure expansion coefficient (meter body, ends free)

A)	Nominal P&T correction factor:					
	Nominal correction factor:	C _{W-OL} PT_nom	=	1.00262		
(B)	Instantaneous P&T correction factor:					
	Fixed quantities:	R ₀	=	0.183250	m	
		w	=	0.045350	m	
		Υ α	=	2.0E+11 1.260E-05	Pa 1/K	
			-	1.2001-03	1/10	
		T _{OL} nom	=	40.0	°C	
		T _{cal} new	=	7.0	°C	
		T _{cal} old	=	7.0	°C	
		P _{OL} nom	=	23000000.0	Pa-g	(= 230 barg)
		P _{cal} new	=	6300000.0	Pa-g	(= 63 barg)
		P _{cal} old	=	6300000.0	Pa-g	(= 63 barg)
	Input from instruments:	T _{OL} inst	_	45.0	°C	
	input nom moramono.	P _{OL} inst	=	24000000.0	Pa-g	(= 240 barg)
	Calculations:	ΛT	_	5.0	к	
		ΔΡ	=	1000000.0	Pa	
		β	=	2.02040E-11	1/Pa	
		1+3*α*ΔΤ	_	1.00018900		
		1+3*β*ΔΡ	=	1.00006061		
	Instantaneous correction factor:	CoL PT_inst	=	1.00025		
(C)	Total P&T correction factor:	C _{W-OL} PT_nom * C _{OL} PT_inst	=	1.00287		

Conclusions (1)

- Correction factors are established for P & T effects on the 18" Q-Sonic 5 ultrasonic flow meters, from Westerbork flow calibration conditions, to Ormen Lange line conditions.
- The correction factors account for several P & T effects:
 - A. Change of the meter's cross-sectional area,
 - B. Change of the ultrasonic path geometry (inclination angles and lateral chord positions),
 - C. Change of the length of the ultrasonic transducer ports,
 - D. Change of the length of the ultrasonic transducers,
 - E. Change of the Reynolds number.
- For the Ormen Lange application, evaluation of all of the effects A-E have been necessary.

CONC Instrumentation

Conclusions (2)

- 2 correction factors are proposed for implementation in the flow computer:
 - (1) A "nominal PT correction factor" = 1.00262 (main correction)
 - (2) An "instantaneous PT correction factor", typically an order of magnitude smaller ("living" correction, based on analytical model B)
- If the correction factors are not used, the Q-Sonic 5 will underestimate the volumetric flow rate by the same amount (≈ 0.26 %)
- The conclusion is based on a theoretical analysis (using analytical and finite element numerical modelling)
- Experimental validation of the theoretical results has been investigated, but not found feasible today, on basis of:
 - Screening of available flow calibration laboratories (dynamic)
 - Evaluation of possible static (no-flow) measurements

Acknowledgements

- Trond Folkestad, Hydro
- Øyvind Torvanger and Katrine Osgjerd, CMR Prototech
- Reidar Bø, CMR
- Per Salvesen, Autek
- Elster Instromet Ultrasonics, the Netherlands
- Hydro (project "owner", discussions)
- NPD, Shell and Gassco (discussions)