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1  INTRODUCTION 
 
There is increasing demand for flow meters capable of self diagnosing problems. Whereas 
marginal reductions in flow meter uncertainty are important, a stated meter uncertainty is only 
truly meaningful when there is a guarantee the meter is operating correctly.  
 
Often a flow meter is only diagnosed as having a problem when there is a substantial 
discrepancy between the expected and meter predicted flows. Small errors (e.g. a few 
percent) may not be noticeable. Even if a piping systems mass balance shows a discrepancy, 
it can be difficult to confirm which meter is in error. It is usually an order of magnitude more 
difficult again, to spot a small meter error if no error is indicated from external sources.  
 
Flow meter verification is becoming an important an aspect of flow metering. A useful tool for 
any flow meter is the ability to self diagnose its performance and indicate any problem. A 
main flow metering technology is the generic Differential Pressure (DP) meter1. The DP meter 
uses pressure, temperature and DP transmitters to take primary readings. Transmitters 
supply information to flow computers which calculate the flow rate. However, while DP meters 
are relatively inexpensive, trusted and reliable, they do not have any universally accepted self 
diagnostic capabilities. There is often a “plug and pray” mentality to DP meters, based on their 
good track record and an inherent acceptance that there is no diagnostic capability available.  
 
In this paper the fluid mechanic phenomena associated with DP meters are reviewed and 
system redundancy factors are discussed. A DP meter diagnostic methodology is developed 
based on fundamental hydraulic pipe theory. Finally, practical examples with test data are 
presented to show the practicality and limitations of such a diagnostic methodology. 
 
 
2 THE FUNDAMENTALS OF FLUID MECHANICS AND DP METERS  
 
A DP meter uses a geometric constriction to produce momentum change in a flow. Applying 
mass and energy conservation equations across the constriction produces a flow rate 
equation dependent on geometry, fluid density and DP. However, a geometric expansion can 
be used instead, as implied by Fox & McDonald [1] and later explicitly stated by Steven [2]. 
 
2.1 Derivation of the Generic Constriction DP Meter Flow Equation 
 
Consider incompressible, horizontal, reversible flow through a DP meter as shown in Fig 1. (A 
Venturi is shown here but any DP meter geometry would have worked, including those that 
allow uncontrolled contraction and / or expansion of the flow area, e.g. orifice plate meters.)  
 

 
        Fig 1. Generalised Constriction DP Meter          Fig 2. Generalised Expansion DP Meter  
                                                 
1 In this paper the term “DP meter” does not include the special case of laminar flow element devices. 
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Mass continuity and energy conservation gives Equations 1 and 2 respectively: 
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where 
.

m  is the mass flow rate, 
.

Q  the volume flow rate, 1A  & 2A  are the inlet and outlet areas 
respectively, 1P  & 2P  are the inlet and outlet pressures respectively, 1U  & 2U  are the inlet and 
outlet average velocities respectively and ρ is the density. Let the beta ratio,β , be defined by 
equation 3, and E  (the velocity of approach) be defined by equation 4. Therefore: 
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Substituting equation 2b into equation 1 gives: 

( )21222

.
2 PPEAUAm −== ρρ   ---- (5) 

 
2.2 Derivation of a Generic Expansion DP Meter Flow Equation 
 
The same physical laws apply for incompressible, horizontal, reversible flow through a meter 
geometry shown in Figure 2, i.e. mass and energy conservation (equations 1a and 2c 
respectively). Let the expansion beta ratio, 'β , be defined by equation 3a and 'E (the velocity 
of departure) be defined by equation 4a. Re-arranging gives equation 6. 
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2.3 Comparisons of the Constriction and Expansion Type Generic DP Meters 
 
The analysis assumed reversible flow through two conduits that are mirror images, i.e. they 
are geometrically symmetrical. Therefore, Equations 5 and 6 are mirror images as the flow 
through Figure 2 is precisely the flow through Figure 1 in reverse. In reality flows are 
irreversible so DP meters have corrections factors. A constriction DP meter flow coefficient, K, 
is defined by equation 7. This accounts of all factors not accounted for by theory. Note that for 
gas flows, density changes with pressure and hence an incompressible flow assumption is 
not valid. The contraction DP meters density correction is called the expansibility, ε . This is 
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some function 
1f  (see equation 8). If the expansibility effect is known it can be separated from 

the flow coefficient. The discharge coefficient (Cd) accounts for the remaining factors. 
 

tltheoretica

d PEA
m

m

mCK
Δ

===
ρ

ε
22

.

,

.

.

 --- (7)   and  ( )βκε ,,,11 tPPf Δ=   --- (8) 

 

Note 
.

m  is the actual mass flow rate, ltheoreticagm ,

.
is the value predicted by equation 5, κ is the 

gases isentropic exponent and 21 PPPt −=Δ . If a flow is incompressible the expansibility is 
unity. For a constriction DP meter, Cd  <1 and 1≤ε  (see Appendix) and K < 1. We now have: 
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  --- (5a)     where     dCK ε=  --- (9) 

 
If the expansibility has been derived for a set constriction DP meter it is typical to calibrate the 
meter by use of the discharge coefficient. If no expansibility has been derived the meter is 
calibrated by use of the flow coefficient. A simple methodology is to set a constant value for 
the coefficient in use. However, it is sometimes necessary to fit the coefficient to the Reynolds 
number to get a higher precision flow meter. The Reynolds number is shown in equation 10, 
and the data fits to the coefficients in equations 11 and 11a: 
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4Re ==    --- (10) ,   ( )Re2fK =   --- (11)   or ( )Re3fCd =   --- (11a) 

 
whereμ is the viscosity, D  is a length (e.g. meter inlet diameter) and functions

2f & 
3f  are data 

fit functions. In this case the flow rate is calculated by iterating equation 5a. 
 
An expansion meter would have an “expansion flow coefficient”, 

rK  (equation 7a). An 
expansion slows a gas flow, increasing the pressure and density. A compression factor ( 'ε ) 
could account for this phenomenon (see equation 8a, where 

4f  is some particular function). If 
the flow is incompressible the compression factor is unity. Note that here ltheoreticam ,

.  is the value 
predicted by equation 6 and 23 PPPr −=Δ . 
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If a compression factor was known, the expansion flow coefficient (

rK ) could be split into the 
two components of the compression factor ( 'ε ) and the expansion discharge coefficient ( '

dC ), 
which would account for the remaining factors. The expansion discharge coefficient can be 
greater or less than unity and 1' ≥ε . Therefore, unlike the flow coefficient, K , the expansion 
flow coefficient 

rK  (equation 7a) could be greater or less than unity (see Appendix). When 
including the expansion flow coefficient in the derived expansion DP meter equation we get:  
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23
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dr CK ε=  --- (9a) 
 

With no compression factor currently available for expansion DP meters practical calibrations 
would use the expansion flow coefficient. It would depend on the expansion flow coefficient 
sensitivity to Reynolds number whether a constant value or a function of the Reynolds 
number, ( )Re4fKr = , should be used. 
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2.4 General Hydraulic Pipe Flow Theory and Metering by Permanent Pressure Loss 
 
Any intrusive component in a pipe (such as a DP meter) produces a permanent pressure loss, 
(or “PPL”). Again, any DP meter (or pipe component) is useable for the following example. 
Consider incompressible flow across a Venturi meter (see Figure 3). The energy equation for 
a horizontal meter applied between the inlet (point “1”) and the point downstream where 
pressure recovery has been completed (point “3”) can be written as equation 12: 
 

 
Fig 3. Permanent Pressure Loss Meter (sketch not to scale or dimensionally precise.) 
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where 1P  and 3P  are the inlet and downstream pressures respectively, ρ  is the fluid density, 

1U  and 3U  are the inlet and downstream velocities respectively and lK  is termed the “minor 
loss coefficient”. DP meters are typically applied in pipe lines of constant2 cross sectional area 
( A ). Mass continuity shows the inlet and exit velocities are the same and equation 12 
reduces to equation 12a, where 31 PPPPPL −=Δ  is the PPL. Rearranging gives equation 13: 
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Note a “PPL coefficient”, PPLK , has been introduced as defined by equation 14:  
 

l
PPL K

K 1
=  ---- (14) 

 
Most minor loss coefficient component tables list constant values, i.e. suggesting minor loss 
coefficients are insensitive to Reynolds number. Munson et al [3] states:  
 
“For many practical applications the Reynolds number is large enough so that the flow 
through the component is dominated by inertia effects, with viscous effects being of 
secondary importance….” and “In a flow that is dominated by inertia effects rather than 
viscous effects, it is usually found that pressure drops and head losses correlate directly with 
the dynamic pressure”. 
                                                 
2 DP meters with different inlet and exit cross sectional areas are called truncated meters. The 
methodologies described in this paper work with truncated meters after some modification of the 
equations. 
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However, the traditional application of minor loss coefficients is to the prediction of 
approximate pressure losses through pipes. When creating a metering system, a lower level 
of uncertainty may be required. It may be necessary to account for a Reynolds number effect 
when calculating the PPL coefficient. Furthermore, PPL’s of gas flows cause the gas density 
to reduce. No expansion factor for such a metering system exists. A practical approach is to 
calibrate the PPL coefficient (which includes any expansion effect) against Reynolds number. 
It would then require engineering judgment on whether to use a constant value (allowing a 
direct solution to equation 13) or express the parameter as a function of the Reynolds number 
(and solve equation 13 by iteration of the mass flow rate). 
 
2.5 One DP Meter Body, Two DP transmitters, Three DP Flow Equations 
 
As fluid passes through a DP meter it flows first through a geometric constriction (expanding a 
gas flow) and then through a geometric expansion (compressing a gas flow) and this 
produces a permanent pressure loss. Hence, every DP meter has imbedded within it three 
metering opportunities: a conventional converging geometry meter (using the traditional 
differential pressure, tPΔ ), an expanding geometry meter (using the recovered DP, rPΔ ), and a 
PPL meter (using the permanent pressure loss, PPLPΔ ). A DP meter can be thought of as three 
flow meters in series in the same location. For example, Figure 4 shows a sketch of a Venturi 
meter with DP transmitters to measure the three DP’s of interest. Figure 4a shows a sketch of 
the approximate pressure fluctuations through a DP meter.  
 

   
Fig 4. Meter with 3 DP measurements.       Fig 4a.  Approx DP Meter Pressure Fluctuations.  
 
Figure 4a shows a fundamental DP meter rule that the sum of the “recovered” DP (i.e. the 
downstream to minimum area or “throat” DP) and PPL is the upstream to throat DP. This can 
be expressed as equation 15 or equation 15a. (Note “PLR” is sometimes used to indicate the 
ratio of PPL to the upstream to throat DP.) 
 

PPLrt PPP Δ+Δ=Δ   --- (15)      ,      1=
Δ
Δ

+
Δ
Δ

t

PPL

t

r

P
P

P
P

 --- (15a) 

 
Measuring any two of these DP’s allows the calculation of the third DP and therefore only two 
DP transmitters are required to have all three equations available. Naturally, if a system 
measures two of the three DP’s and derives the third via equation 15 the resulting value will 
have a small increase in uncertainty compared to direct measurement.  
 
We can see from Figure 4’s Venturi meter example that the traditional DP meter, geometric 
expansion DP meter and the PPL DP meter equations, which where each derived earlier in 
isolation, are all applicable to the same DP meter body. We see that 'ββ =  and 'EE = , and 
switching the subscripts of 1, 2 & 3 to the DP meter body subscripts of “i” (for “inlet”), “t” (for 
“throat”) and “d” (for “downstream”) respectively, we can update equations 5a, 6a & 13 to 
equations 16, 17 & 18. 
 
With the combination of three DP meter equations on one DP meter it is simplest to use the 
meter body inlet density for all calculations. That is, the geometric expansion meter need not 
use its inlet density (i.e. the throat density). Hence, even though the density increases 
between the throat and the downstream pressure ports, at no time would the gas density be  
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higher than the meter body inlet density and therefore in practice, even the geometric 
expansion meter equation could have an expansion factor. 
 
Currently, with the expansion factors for any geometric expansion DP and PPL meters not 
being derived, these meters need to have flow coefficients that include the density variable 
effect. Note, that many DP meters need calibrated even for the traditional discharge 
coefficient or flow coefficient to be found, so all that is needed to calibrate a generic DP meter 
for all three equations (16 to 18) instead of the one traditional equation 16 is one extra DP 
transmitter. This means it is no more expensive and takes only marginally more effort to 
calibrate the extra two “meters” while calibrating the traditional meter. 
 
2.6 Relationships Between the Three Available DP Flow Meter Equations  
 
Let us consider a generic DP meter with incompressible flow and constant flow coefficients. 
(However, the methodology does work for compressible flow with flow coefficients varying 
with Reynolds number.) From the law of conservation of mass we know that all three flow rate 
equations should (within their respective uncertainties) predict the same flow rate value. 
Therefore combining equation 16 to 18 gives equation set 19: 

 

 PPLPPLirrttt PKAPKEAPKEAm Δ=Δ=Δ= ρρρ 222
.

  --- (19) 
 
For a set density and constant flow coefficients, equations 16 to 18 are parabolic equations. 
The mathematical equation for a parabola is axy 42 = , where “a” is the parabolas focus. 
Squaring and equating equations 16 to 18 we get equation set 19a: 
 

( ){ } ( ){ } ( ){ } PPLPPLirrttt PKAPKEAPKEAm Δ=Δ=Δ= 222
2.

222 ρρρ   --- (19a) 
 

Now let:  { }2

2
KEAa tt

ρ
=  --(20), { }2

2 rtr KEAa ρ
=  --(20a), { }2

2 PPLiPPL KAa ρ
=  --(20b) 

 
i.e. ta , ra and PPLa  are the foci of three parabolic flow equations. Therefore we have: 

PPLPPLrrtt PaPaPam Δ=Δ=Δ= 444
2.

  --- (19b) 
 

Let us compare the relative magnitudes of these three foci. First, as PPL is always present 
and positive, equation 15 states that rt PP Δ>Δ  and therefore from equation set 19a we see 
that 

rtt KEAKEA <  and hence from equations 20 and 20a we know that rt aa < . We know that 

PPLt PP Δ>Δ  and therefore from equation set 19a we see that PPLit KAKEA <  and hence from 

equations 20 and 20b we deduce that PPLt aa < . The relationship between ra  and PPLa  
depends on the PLR characteristics of a given DP meter. Different DP meter designs have 
significant differences in this respect. For example, the Venturi meter is a device that will 
recover the majority of the traditional differential pressure, the orifice plate meter is a device 
that will lose the majority of the traditional differential pressure where as some DP meter 
designs such as cone or nozzle meters will recover a moderate amount of the traditional 
differential pressure. Consider the case where the majority of the traditional differential 
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pressure is recovered, i.e. PPLr PP Δ>Δ  (see Figure 5a). From equation set 19a we see for this 
condition that 

PPLrt AKKEA < . Hence we also know from equations 20a and 20b that for this 

condition PPLr aa < . Therefore, the following meter characteristic is set:  
 

PPLrt aaa <<  
 

Consider the case where the majority of the traditional differential pressure is lost, i.e. 
PPLr PP Δ<Δ  (see Figure 5b). Equation set 19a shows for this case that 

PPLrt AKKEA > . Hence 

we also know from equations 20a and 20b that for this condition PPLr aa > . Therefore, the 
following meter characteristic is set: 
 

rPPLt aaa <<  
 

Let us now consider the third case where the recovered DP and PPL are equal, i.e. 
PPLr PP Δ=Δ  (see Figure 5c). From equation set 19a we know 

PPLrt AKKEA = . From equations 
20a and 20b we know PPLr aa = . Therefore, the following meter characteristic is set:  
 

PPLrrtPPLt aaaaaa =<< ,,  

 
In this paper a three flow coefficient to Reynolds number plot is called a 3K plot and a flow 
rate to three DP plot (as seen in Figures 5a to 5c) is called a “PRT” plot (for “Permanent 
Pressure Loss, Recovered DP, Traditional DP mass flow rate plot”).  
  
The question remaining is do the two unconventional equations have acceptable uncertainty 
for practical use in real applications? Only if they do is there potential for the development of a 
diagnostic system. In section 3 the practicality of all three equations is demonstrated with 
multiple data sets. The data is shown in terms of 3K plots and PRT plots. The flow coefficients 
shown are all fitted to 95% confidence uncertainty levels. (Note that the PRT plots are 
restricted to a selected small density ranges as the plots are sensitive to the density value.) 
 
Finally, note that if two of the three flow coefficients are known the third can be derived from 
the equations 15 to 18. The resulting relationship is shown as equation 21. Equation 21 can 
check calibration results to assure the results are reasonable.  
 

{ }2422
rPPL

PPLr
d

KEK
KKCK

β
ε

+
==    --- (21) 

 
 

3 DP METER DATA SETS   
 
3.1 Standard Orifice Plate Meters 
 
CEESI tested four 4” orifice meters of beta ratios 0.3414, 0.4035, 0.4965 and 0.6826. All had 
the PPL measured using a downstream tapping located in accordance with ISO 5167 [5], i.e. 
6 pipe diameters (6D) downstream of the plate. The PPL transmitter had an upper range limit 
(URL) of 400”WC (i.e. approximately 1 Bar) so data with DP’s <10”WC were disregarded. The 
facility used was a wet gas test facility (i.e. not a gas meter calibration facility) so the mass 
flow reference meter was a turbine meter with an uncertainty of ±0.53%. The test set up is 
shown in Figure 6. Figures 7 to 10 show the CEESI JIP orifice meters 3K and PRT plots. The 
pressure ports were read from top dead centre. All four orifice meters had discharge 
coefficients that were within the uncertainty limits of the Reader- Harris Gallagher (RHG) 
equation (ISO 5167 [5]). The orifice meter has a relatively high PPL.  
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Fig 5a. Pressure fluctuation through DP meter where majority of DP is recovered (PLR < ½) 
and the associated three parabolic flow rate equations.  
 

 
Fig 5b.  Pressure fluctuation through DP meter where majority of DP is lost (PLR > ½) and the 
associated three parabolic flow rate equations. 
 

 
Fig 5c.  Pressure fluctuation through DP meter where DP lost and recovered are equal (PLR 
= ½) and the associated three parabolic flow rate equations. 
 
Figures 7 to 10 show results as theoretically predicted and shown in Figure 5b. Also, as beta 
ratio increases there is a decrease in PPL and an increase in recovered pressure. Therefore, 
Figures 7 to 10 show that the discharge coefficient is mildly sensitive to beta ratio where as 
the expansion flow and PPL coefficient are very sensitive to beta ratio. 
 
All four orifice meter results showed that across relatively large turn downs (up to 9:1), 
ignoring any gas expansion effects on equations 17 & 18, and using constant coefficient 
values instead of Reynolds number fits, after calibration, the traditional metering method had 
an uncertainty of < ±1%, while the non-standard methods had uncertainties < ±1.5%. These  
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Fig 7. CEESI Wet Gas JIP 4”, 0.3414 Beta Ratio Orifice Plate Meter Dry Gas Data. 
 

 
Fig 8. CEESI Wet Gas JIP 4”, 0.4035 Beta Ratio Orifice Plate Meter Dry Gas Data. 
 

 
Fig 9. CEESI Wet Gas JIP 4”, 0.4965 Beta Ratio Orifice Plate Meter Dry Gas Data. 

 
Fig 10. CEESI Wet Gas JIP 4”, 0.6826 Beta Ratio Orifice Plate Meter Dry Gas Data. 
 
are meter uncertainty levels of practical use and therefore equations 17 & 18 are capable of 
being useful as part of a DP meters self diagnostic system. 
 
ISO 5167 [5] offers a method of estimating an orifice plate’s minor loss coefficient (see 
equation 22). ISO therefore implies a method for predicting the orifice meter PPL coefficient  
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Fig 6. The CEESI JIP orifice meter set up.   
 
without calibration as the RHG discharge coefficient prediction can be substituted into 
equation 22 to find the minor loss coefficient, meaning the PPL coefficient can be found by 
equation 14. ISO also approximates the orifice meter PLR as shown in equation 23. 
Furthermore, manipulation of equations 9, 19, 15 and 23 gives equation 24. An orifice meter 
expansion flow coefficient is therefore predictable via ISO. It is therefore possible to compare 
ISO information derived predictions with test results values. For a simple first look, the 
discharge coefficient is approximated to 0.6 and the other coefficients predicted. Table 1 
shows these results. The ISO equations for orifice meter PLR’s and minor loss coefficients 
are designed to give approximate estimates of the PPL the meter will induce on the flow. 
They are not stated to be precise predictions. Table 1 shows that most ISO derived 
predictions are close to the test results. However, there are cases where the differences are  
> 4%. Therefore, for equations 17 & 18 to be practically useful orifice meter expansion flow 
and PPL coefficients should be found by calibration. 
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Meter 
(beta) 

Test  
Kr 

“ISO” 
Kr 

%diff 
Kr 

Test 
Kppl 

“ISO” 
Kppl 

%diff 
Kppl 

Test 
PLR 

ISO 
PLR 

%diff 
PLR 

0.3414 1.6220 1.6655 2.68 0.0748 0.0755 0.996 0.8663 0.8702 0.45 
0.4035 1.3990 1.4210 1.57 0.1088 0.1093 0.455 0.8155 0.8217 0.76 
0.4965 1.1690 1.1669 -0.18 0.1790 0.1777 -0.734 0.7327 0.7356 0.39 
0.6826 0.9000 0.8624 -4.18 0.4360 0.4312 -1.104 0.5444 0.5159 -5.23 

Table 1. Comparisons of test results to ISO 5167 predictions.  
 
3.2 Standard Venturi Meters 
 
CEESI tested a 2”, 0.6001 beta ratio, 120 diffuser angle Venturi (see Figure 11) with natural 
gas flow. The PPL was measured via a pressure tap located on the meter body at 8D from 
the diffuser exit (i.e. a longer distance than recommended by ISO [5]). CEESI also tested a 4”, 
0.6001 beta ratio, 150 diffuser angle Venturi meter with natural gas flow. The PPL was 
measured via a pressure tap located in a downstream spool 6D from the diffuser exit (i.e. in 
accordance with ISO [5]). In both cases the PPL transmitters had an URL of 400”WC. Due to 
the Venturi meter having relatively low PLR’s, most of the PPL’s read were < 10”WC and 
therefore data was accepted at DP <5”WC at the cost of increased uncertainty. Both test 
systems reference meters had uncertainties of < ±1%. Pressures were read from top dead 
centre of the meters. Figure 12 & 13 shows the 3K and PRT plots. 
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Fig 11.  2”, 0.6 Beta Ratio Venturi Meter. 
 
ISO [5] states that “Research into the use of Venturi tubes in high-pressure gas [≥ 1 MPa (≥ 
10 bar)] is being carried out at present…” and “In many cases for Venturi tubes with machined 
convergent sections discharge coefficients which lie outside the range predicted by this part 
of ISO 5167 by 2% or more have been found. For optimum accuracy Venturi tubes for use in 
gas should be calibrated over the required flowrate range.” Furthermore, the discharge 
coefficients stated in the standard for machined convergent sections are only valid for 
Reynolds numbers less than one million. That is, if the pressure is higher than 10 bar and / or 
the Reynolds number is greater than one million calibration is suggested. There are also 
independent verifications of Venturi meters giving unpredictable discharge coefficients (e.g. 
Geach et al [6]). Therefore, if a Venturi is being calibrated to find the traditional discharge 
coefficient there is little more effort to add an extra DP transmitter and calibrate all three 
equations 16 to 18.  
 
ISO [5] does not offer PLR predictions for Venturi meters but Miller [4] states that the PLR of a 
Venturi with a 150 diffuser angle can be predicted by equation 25. Therefore, from this an 
expansion flow coefficient can be predicted by considering equations 9, 15a, 19 & 25. This 
prediction is shown as equation 26. The PPL coefficient can be predicted by considering 
equations 3, 9, 14 & 19 (see equation 27). Figures 12 & 13 shows results as theoretically 
predicted (see Figure 5a). Table 2 shows the results of comparing the Miller PLR prediction 
based values and the test results.  
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The 4” Venturi’s discharge coefficient showed some variation with Reynolds number and a 
tendency for discharge coefficients to be larger than unity (as shown by Geach et al [6]). The 
discharge coefficient of 1.003 is considered a reasonable result. After calibration the three 4” 
Venturi flow coefficients all gave flow rate predictions to ≤ ±1.03%. The available 2” Venturi 
data has a very small Reynolds number range (a turn down of 1.37:1) so little can be said 
regarding the flow coefficient’s relationships with Reynolds number. All three 2” Venturi flow 
coefficients were fitted to constant values and after calibration they each gave flow rate 
predictions to ≤ ±1%. However, the 2” data had a larger discrepancy with the Miller PLR 
prediction based values (see Table 2). Note that the Miller PLR prediction is an approximation 
for a slightly different diffuser angle and the two Venturi meters had different downstream 
tapping locations so this is not a significant issue. However, calibration is required to 
accurately predict the Venturi meter flow coefficients. Both Venturi meter result showed that, 
by ignoring gas expansion effects on equations 17 & 18, and using constant coefficient values 
instead of fits to the Reynolds number, after calibration, all three flow predictions (equations 
16 to 18) gave uncertainty levels of practical industrial use. Therefore these metering 
methodologies are capable of being useful as part of a Venturi meters self diagnostic system. 
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Fig 12. CEESI 2”, 0.60 Beta Ratio Venturi  Meter Dry Gas Data. 
 

 
Fig 13. CEESI 4”, 0.60 Beta Ratio Venturi Meter Dry Gas Data. 
 

Meter 
size 

Test  
Kr 

“Miller” 
Kr 

% diff 
Kr 

Test 
Kppl 

“Miller” 
Kppl 

%diff 
Kppl 

Test 
PLR 

Miller 
PLR 

%diff 
PLR 

2” 1.046 1.078 3.1 1.143 1.060 -7.3 0.111 0.1324 19.3 
4” 1.071 1.078 0.7 1.030 1.060 2.9 0.140 0.1395 -0.4 

Table 2. Comparisons of test results to Miller PLR prediction derived predictions.  
 
3.3 Cone DP Meters 
 
The cone meter is not listed in the standards and no PLR prediction is offered by Miller. 
Hence no flow coefficient predictions are made here. BG Group tested a 6”, 0.75 beta ratio V-
Cone meter with natural gas flow at K-Lab with the PPL measured via a tapping 6D from the 
back face of the cone. The data has been released to this author. The URL of the DP 
transmitters at K-Lab are unknown. The readings were as high as 522”WC (i.e. approximately 
1.3 bar) so any DP’s <10”WC were removed as potentially high uncertainty points. 
 
CEESI has a 4”, 0.7499 beta ratio generic cone meter installed permanently in the wet gas 
flow test facility. Figure 14 shows a sketch of this cone meter. This meter has the PPL 
measured via a pressure tapping located on the meter body at 3D downstream of the back 
face of the cone. (Note that there is no cone meter pressure recovery length stated in the 
literature. The choice of 3D was therefore engineering judgment only.) This meter was initially 
gas calibrated in a separate CEESI facility. The traditional DP and PPL’s were recorded and 
they were within range of the DP transmitter ranges used. The reference gas meter had an 
uncertainty was ±0.5%.  
 

 
Fig 14. A Sketch of a Generic Cone DP Meter. 
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Fig 15. K-Lab 6”, 0.75 Beta Ratio V-Cone Meter Data. 
 

 
Fig 16. CEESI 4”, 0.7499 Beta Ratio Cone DP  Meter Data. 
 

 
Fig 17. CEESI 4”, 0.7500 Beta Ratio Cone DP Meter Data. 
 
The third data set is from a different 4”, 0.75 beta ratio generic cone meter tested at a CEESI. 
The PPL was measured via a pressure tapping located in a downstream spool again at 3D 
from the back face of the cone. The PPL transmitter had an URL of 400”WC and therefore 
any DP’s <10”WC were disregarded. The reference flow meter had an uncertainty of ±0.5%.  
 
Figures 15 to 17 show the three cone meter 3K and PRT plots. The discharge coefficients of 
the three cone meters are all3 in the vicinity of 0.8. However, the spread of 0.787 < Cd < 0.809 
is typical of cone meters. Furthermore, even though the three meters are similar designs 
(although the K-Lab meter is 6” with a different downstream pressure tap location) the 
expansion flow coefficient and the PPL coefficient values vary between each meter. Note that 
in Figure 15, PLR ≈ ½ whereas in figure 16 has PLR >½ and Figure 17 has PLR <½. These 
differences are likely due to manufacturing inconsistencies. It is not yet possible to accurately 
predict any of the cone meter flow coefficients so calibration is required. Nevertheless, it has 
previously been shown calibration of the expansion flow coefficient and the PPL coefficient 

                                                 
3 The Figure 17 data set had several gas velocities in excess of the typical industry maximum of 30 m/s. 
These data points, especially at lower pressures, had significant expansibility effects. They were 
removed from the data presented here to be discussed in proper context in Section 5. 
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would also be required for the orifice and Venturi meters. After calibration, ignoring expansion 
effects and using constant values only instead of Reynolds number fits, all three cone meters 
had all three flow equations (16 to 18) predicting flow rates to  an uncertainty ≤ ±1%. This 
again offers proof that any DP meter can be calibrated to give all three flow equations to an 
industrially useful uncertainty level. (It is assumed here that the expansion and PPL flow 
coefficients will be found to be as repeatable as discharge coefficients.) 
 
Note that the cone meter is marketed as having a discharge coefficient largely immune to 
upstream flow disturbances (see Peters [7]). It is not currently known what effect upstream 
flow disturbances have on cone (or any DP) meters expansion and PPL flow coefficients.  
 
3.4 4”, 0.791 Beta Wedge Meter & a 4”, 0.5 Beta Eccentric Orifice Plate Meter 
 

       
Fig 18. Wedge Meter                                          Fig 19. Standard & Eccentric Orifice Plates  
 
CEESI tested a 4”, 0.791 beta ratio wedge meter (see Figure 18) and a 4”, 0.500 beta ratio 
eccentric orifice plate meter (Figure 19) with dry natural gas flows. The wedge was located 
top dead centre and the orifice located bottom dead centre. There are no standards available 
for wedge or eccentric orifice meters and therefore neither meter has stated downstream 
length requirements to assure maximum pressure recovery. The PPL’s were read via ports on 
downstream spools at 6D from the low pressure ports. PPL transmitters with URL’s of 
400”WC were used and data with DP’s < 5”WC were disregarded. The reference meter had 
an uncertainty of ±0.53%. The pressure taps where at top dead centre.  
 

 
Fig 20. CEESI 4”, 0.791 Beta Ratio Wedge DP Meter Data. 
 

 
Fig 21. CEESI 4”, 0.500 Beta Ratio Eccentric Orifice Plate Meter Data.  
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Figures 20 and 21 show the wedge and eccentric orifice meter 3K and PRT plots respectively. 
As there are no expansion factors available for these DP meters the traditional calibrations 
use the flow coefficient, K. The wedge meter flow coefficient had a < ±0.7% uncertainty and 
the expansion and PPL flow coefficients had uncertainties ≤ ±1.03%. The average PLR of the 
wedge meter was 0.395 and hence the majority of the traditional DP is recovered. The PRT 
plot shows that the wedge meter data behaves as predicted in section 2f (i.e. it matches 
Figure 5a). The eccentric orifice meter flow coefficient had a < ±1.3% uncertainty and the 
expansion and PPL flow coefficients had uncertainties < ±1.5%. The average PLR of the 
eccentric orifice meter was 0.73 and hence the majority of the traditional DP is lost. The PRT 
plot shows that the eccentric orifice meter data behaves as predicted in section 2f (i.e. it 
matches Figure 5b). Hence, for both the wedge and eccentric orifice meters, equations 16 to 
18 could be of practical industrial use.  
 
3.5 4”, Vortex Meter with an Effective 0.78 Beta Ratio  
 
CEESI tested a VorTek Instruments 4” vortex meter with air flow. The vortex meter is not a 
DP meter by design. However, these fluid mechanics principles are applicable to any pipe 
obstruction. The VorTek Instrument vortex meter tested had pressure taps both upstream and 
adjacent to the vortex shedding bluff body. A sketch is shown in Figure 22.  
 

 
Fig 22. Sketch of the Vortex Meter with Two DP Transmitters Installed. 

 
The effective beta ratio was 0.78 (when treating the bluff body as a DP meters primary 
element). The PPL was read via a downstream tap on the meter spool 3D from the bluff body. 
The PPL transmitter had a URL of 400”WC so data with DP’s < 10”WC were disregarded. 
The reference meter was a critical nozzle with ±0.5% uncertainty. This test had an extremely 
large turndown and several points had velocities well in excess of 30 m/s. This data has been 
removed here as it is of limited practical industrial use and had a significant expansion effect. 
This effect is discussed more in Section 5. 
 

 
Fig 23. Low and Moderate Velocity CEESI Test Data on Vortex Meter Set Up as a DP Meter. 
 
Figure 23 shows the vortex meter 3K and PRT plots. With no expansion factor available the 
flow coefficient is used. This had a 0.8% uncertainty. The expansion and PPL flow coefficients 
had uncertainties < ±1.6%. Hence, equations 16 to 18 apply to the vortex meter and these 
equations could be integral to a practical vortex meter diagnostic tool. The average PLR was 
approximately 0.55 (i.e. PLR > ½).  Note that the PRT plot (see Figure 23) agrees with the 
theory described in Section 2f for this case (see Figure 5b).  
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4  DP METERS WITH SHORT DOWNSTREAM PRESSURE TAPPING DISTANCES 
 

 
Fig 24. ISA Controls, 6”, 0.55 Beta Venturi Meter Tested at NEL. 

 
One issue with including downstream pressure taps is overall meter length. ISO [5] states 
orifice and Venturi meters should be given 6D to recover all the recoverable pressure. For 
moderately large meters this can become a relatively long distance. It is of interest to see the 
effect of shortening this distance to place the downstream tap in a location where the flow 
may still be decelerating / compressing. There are two available data sets that allow this 
investigation. Neither meter was tested in this way deliberately.  
 
In 1998 ISA Controls built a 6”, 0.55 beta ratio Venturi meter for PhD wet gas flow research 
(see Figure 24). Note the two downstream taps. One is at the junction of the diffuser exit and 
the other is 1D further downstream. These downstream taps are far short of ISO’s suggested 
6D location. This Venturi was tested with the 1D downstream tap used. The dry gas flow  
results are shown in Figure 25. The discharge coefficient had an uncertainty of 0.7% while the 
expansion flow coefficient had an uncertainty of 1.3%. These values are in line with the other 
DP meter data sets. However, the PPL coefficient had a relatively large uncertainty of 5%. 
The traditional DP and the PPL were measured directly. The recovery DP was derived by 
equation 15. The PPL was considered an add on to the main test purpose so the last 
available transmitter was used. This had a URL of 750”WC. The result was the gas PPL data 
were all at <8% of the transmitters range (and PPL’s > 10”WC were accepted). It was for this 
project in 1998 that the author first derived equations 17 & 18. The “PPL” metering method 
was dropped due to this poor result. However, it is noteworthy that the PLR was 0.112 (±9%), 
i.e. close to the expected full pressure recovery of a Venturi (e.g. see Table 2). Therefore, the 
majority of the pressure recovery had taken place by 1D downstream of the diffuser. The 
scatter is therefore considered largely due to the significant uncertainty in the PPL values. 
The expansion flow meter concept worked reasonably because the absolute values of the 
PPL’s were relatively small, so even relatively large percentage errors in PPL measurement 
did not cause relatively large percentage errors in recovery DP estimation by equation 15. 
Figure 25 agrees with the theory of Section 2f (and Figure 5a).  

 

 
Fig 25. ISA Controls 6”, 0.55 Beta Venturi Meter with Short Downstream Pressure Tapping.  
 
CEESI natural gas flow tested a 4”, 0.60 beta ratio circular arc inlet Venturi meter with a 
downstream tap in the meter body ½ D downstream of the diffuser exit (see Figure 26). 
Figure 27 shows the resulting 3K and PRT plots. The reference meter had an uncertainty of 
±0.53%. The PPL transmitter had a URL of 125”WC and all DP’s < 10”WC were discarded. 
The low PPL values were therefore more accurately measured in this case than for the 
classical Venturi meter case above. The flow coefficient, K, had uncertainties <±0.6% and 
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Fig 26. CEESI 4”, 0.6 Beta Ratio Circular Arc Inlet Venturi Meter. 

 

 
Fig 27. JIP 4”, 0.6 Beta Ratio Circular Arc Venturi Meter.  
 
expansion flow and PPL coefficients had uncertainties <±1.1%. The PLR was 0.118 (±6%). 
Therefore, again it appears the pressure recovery was largely complete just after the diffuser 
exit. It is therefore debatable whether the expansion and PPL flow coefficients would be 
substantially different if the downstream tap was located much further downstream. Note that 
Figure 27 shows that this meter behaves as theory predicts (i.e. it matches Figure 5a). 
 
More testing with different DP meter designs is required to make any definite comments 
regarding the effect of shortening the downstream pressure tap distance. The two examples 
here both appear to have fully (or close to fully) recovered pressures so there is limited 
information that can be taken from these data sets. However, from this limited evidence it 
appears that (as long as the DP’s are read to a suitable uncertainty level) it is possible to 
calibrate these three flow coefficients to Venturi meters with shorter downstream tap locations 
than 6D. It is however probably good practice to have the downstream pressure tapping at the 
ISO suggested point of full pressure recovery if space allows.  
 
 
5 EXPANSION FACTOR ISSUES 
 
In reality all three flow rate equations (16 to 18) will, for gas flows, be affected by density 
variations. Some DP meters have expansion factors (i.e. density corrections) for the 
traditional equation 16 but others do not. If an expansion factor (ε ) exists the traditional 
meter is calibrated to the discharge coefficient (Cd). If no expansion factor exists a traditional 
meter is calibrated to the flow coefficient, K. However, for equations 17 & 18 there are, as yet, 
no expansion factors available for any meter.  
 
If there is a high velocity gas flow through a meter with no expansion factor, any flow equation 
(16 to 18) will show a gas density effect. The higher the gas velocity, the lower the beta ratio 
and the lower the pressure, the larger this effect will be. Figure 28 shows an extreme 
example. The 4”, 0.75 beta ratio cone meter had data with gas velocities > 30 m/s. Figure 17 
is the data set shown in Figure 28 with the exception that the high velocity data (> 30 m/s) 
was removed. Here we see that adding the high velocity data significantly increases the 
spread of data. This is the gas density effect. Note that for the case of the discharge  
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Fig 28. CEESI 4”, 0.75 Beta Ratio Cone DP Meter Gas Data. 
 
coefficient, Cd (which is independent of the expansion effect), there is no significant scatter. 
For the other three flow coefficients that are not isolated from the expansion effect, i.e. the 
flow coefficient (K), the expansion flow coefficient (Kr) and the PPL coefficient (KPPL), the 
addition of the high gas velocity data has a distinct effect in increasing the data spread. 
 
The right hand side plot in Figure 28 specifically shows the discharge coefficient, Cd, and the 
flow coefficient, K, at different gas densities, together as an example. The discharge 
coefficient is relatively constant (regardless of the test pressure and flow velocity). The flow 
coefficient is not constant and directly affected by the gas velocity and pressure. Above        
30 m/s the effect becomes more significant. The most extreme divergence between discharge 
and flow coefficients is at the lowest density and highest velocity. This example is shown to 
indicate that the same issues are important to the expansion and PPL flow coefficients as are 
important to the flow coefficient. That is, when applying equations 17 & 18 you must take into 
account the same considerations you would when applying a flow coefficient instead of a 
discharge coefficient in equation 16. However, over a wide range of industrially practical gas 
flow rates the density variation effects are relatively small. Therefore, constant or Reynolds 
number fitted flow, expansion flow and PPL coefficients are industrially practical.  
 
 
6 A GENERIC DP METER DIAGNOSTIC SYSTEM 
 

 
Fig 29. Sketch (not to scale) showing typical DP’s and flow equations relationships. 

 
With three flow equations for every DP meter (with two DP transmitters) there is redundancy 
in the metering system and an opportunity to develop diagnostic capabilities. Figure 29 
indicates a typical relationship between the three DP’s and the parabolic flow equations when 
a DP meter system (chosen randomly to have PLR > ½ ) is operating correctly. The PLR is 
constant for single phase flow through any DP meter. Therefore, if the meter is operating 
correctly all three flow equations must equal each other (within the normal uncertainties of the 
three metering techniques). Let us now discuss two possible DP meter problems: 
 
1) Incorrect pressure or DP reading. (This can be caused by various issues such as blockage 
of a pressure port, impulse line leaks, open valves on DP transmitter manifolds, incorrect 
calibration of a DP meter transmitter, DP transmitter drift etc..) 
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2) Physical damage or partial blockage of the DP meters primary element.  (For example a 
buckled orifice plate, a twisted cone meter assembly, a foreign object caught in the entrance 
to a Venturi meter etc etc..) 
 
6.1 Incorrect Pressure or DP Reading 
 
Let us discuss the consequences to a DP meter if the flow was undisturbed by any physical 
damage to the meter but yet the flow calculations were incorrect due to a problem with a 
pressure port or DP meter transmitter. In such a situation we will have the following result:   
 

PPLPPLrrttt PAKPKEAPKEA Δ≠Δ≠Δ ρρρ 222  --- (28) 

Let us denote tm
.

 as the mass flow rate prediction when applying equation 16, rm
.

 as the 

mass flow rate prediction when applying equation 17 and PPLm
.

 as the mass flow rate 
prediction when applying equation 18.  Let us consider the PLR> ½ case. If there was a low 
throat pressure reading (say, due to a port blockage) the result would be equation 28a, i.e. 
equation 28b. This is graphically illustrated in Fig. 30. 

rrtttPPLPPL PKEAPKEAPAK Δ<Δ<Δ ρρρ 222 -- (28a) or rtPPL mmm
...

<< --(28b) 

 
Fig 30. Graphical representation on the effect of an artificially low throat pressure. 

 
Any one pressure port with a problem affects two of the three DP readings. In this example it 
is the traditional and recovery DP’s that have the errors. The PPL is unaffected as the 
measurement does not include the throat pressure tap information. Furthermore, if only the 
affected traditional DP and recovery DP are measured so that the PPL is found by equation 
15, the errors cancels out thus making the PPL estimate still correct as the traditional DP and 
PPL are in error by the same magnitude as they are being caused by the same error in the 
low pressure port reading. Here, in this example, the errors are both positive. That is, the low 
throat pressure reading increases the traditional and recovered DP readings. However, note 
that for the different possible pressure port errors it is the modulus that must be the same not 
the sign. Depending on what pressure tap has what problem (i.e. an artificially high or low 
pressure) the DP error caused on the two DP’s in question can be both positive, both 
negative or they can be opposites, but the magnitude of the modulus of each DP error is 
always equal. A negative error indicates that the pressure read is less than it should be and a 
positive error indicates that the pressure read is greater than it should be. For the six cases of 
artificially high or low pressures at each of the three different pressure ports the situation is 
described in Table 3.  
 
Equation set 28 can indicate if there is a problem with the DP meter and set of a warning 
even if the standard DP meter equation (16) is still giving seemingly believable results and 
under traditional operation there would be no sign of it being in error. If the problem is with 
one single pressure port the six possibilities, of artificially high or low pressures (e.g. caused 
by leaks, open manifold valves, hydrate, salts or ice blockages etc.) are reduced to three as 

the readings rtPPL mmm
...

<<   or  PPLtr mmm
...

<<  each indicate three of the six possible  
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Table 3. The response of generic DP meters to individual errors in pressure port readings.  
 
problems. Furthermore, if we find that there is no agreement between the three equations but 
yet the traditional meter equation 17 does not have the mid value then a problem has been 
found and we know it is not due to one single incorrect pressure reading at one pressure port. 
This problem is unspecified but crucially, a problem has been identified. Examples that could 
cause such unspecified readings are two blocked ports, damage to the primary element, etc.  
 
6.1.1 Examples for a dp meter with pressure port and / or dp measurement problems  
 
Figure 13 showed the calibration of a 4”, 0.6001 beta ratio Venturi meter. For this following 
worked example series let us consider this meter with a traditional upstream to throat DP 
transmitter and a PPL transmitter installed. The recovered DP is found by taking the 
difference between these two DP readings. 
 



26th International North Sea Flow Measurement Workshop 
21st – 24th October 2008 

 

21 

 
Table 4.  The 4”, 0.6 Beta Venturi Meter Performance at Normal and Abnormal Operations.  
 
If we had a natural gas flow at 50 bara and 30 0C (giving say a 50.4 kg/m3 density) and a flow 
rate of 7 kg/s, then, according to the meters calibration the performance (ignoring the 
calibration and instrument uncertainties) would be as shown in Table 4, column 1. In actual 
flow applications it should be remembered that the flow coefficients used were fitted to data 
sets with small but distinct scatter and therefore they are never precisely correct for each and 
every point. Furthermore, instrument readings have uncertainties. Therefore, in reality, a more 
realistic set of results when the meter is operating correctly is suggested in Table 4, column 2. 
Notice that the three flow equations (16 to 18) all predict the correct mass flow rates to within 
±1% (see column 2, rows 7, 10 & 13 respectively), i.e. within each equations stated 
uncertainties (see Figure 13). Notice also, that the three flow equations do not agree with 
each other (see column 2, rows 14 to 16). However, crucially, as all three predict the actual 
mass flow rate to within their respective uncertainties there is not enough difference in the 
results to trigger a system warning. In fact the difference required between any two flow 
predictions before the system could produce a warning is suggested to be the root mean 
square (rms) of the two flow rate uncertainties. In this case it was found that (see Figure 13) 
the expansion meter (i.e. equation 17) had an uncertainty of 1.03% while the other two meters 
(i.e. equations 16 & 18) each had an uncertainty of 1%. Therefore, for example, the difference 
between the traditional and expansion flow meter predictions before a warning would be 
produced has to be in this case:  
 

( ) ( ) %45.1%436.1103.1 22 ≈=+=rms  
 

Here then, any difference between two predictions greater than their rms % could signal that 
the metering system has a problem. Also note, that the same information is contained in the 
raw DP readings. The PLR of this meter was found during calibration to be 0.1390 ±3%. If the 
PLR exceeds this ±3% variance then this (which is in fact the same information as above 
analysed in an alternate way) also signals the possibility that the metering system has a 
problem. In the case of column 2, rows 14 to 16, we see that the maximum difference in 
equations 16 to 18 is < ±1 and from column 2, row 18 we see the PLR value is <±3% of the 
calibration value. Hence the system is considered serviceable. Now let us introduce 
malfunctions to this correctly operating system and examine the effect on the system.  
 
Worked Example One: A Drifting DP Transmitter 
 
Let us consider a case where the DP transmitter measuring the traditional upstream to throat 
DP has drifted by -2%. The PPL transmitter has maintained its calibrated performance. The 
traditional DP which was being read as 59680 Pa (Table 4, column 2) is now reading 58486 
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Pa (column 3). The PPL is still the same reading but the error in the traditional DP transmitter 
transfers to the recovered DP estimation. The result is shown in Table 4, column 3.  
 
The traditional (equation 16) and expansion (equation 17) meter flow rate predictions are now 
outside their uncertainty claim (see column 3, rows 7 & 10). The PPL meter flow rate 
prediction does not use information from the traditional DP transmitter and therefore its 
performance is unaltered (see column 3, row 13). In a real application the actual mass flow 
rate is unknown so this comparison would not be possible. However, it is possible to compare 
the three flow predictions (equations 16 to 18) to each other. If the DP meter is operating 
correctly these three equations must equate to each other within the rms of the largest 
uncertainties. Therefore, for this example, we know from calibration of the meter in question 
that if the metering system is operating correctly the three flow equations can not  differ by > 
±1.45%. However, here we see (column 3, rows 15 & 16) that the difference between the 
traditional and PPL meter flow rates (equations 16 & 18) and the difference between the 
expansion and PPL meter flow rates (equations 17 & 18) are both > ±1.45%. Also the PLR 
calculated is 3.61% (i.e. column 3, row 18) and therefore out with the calibrated value by > 
±3%. Hence, a diagnostic system would signal a warning that the system has a problem. It 
does not state what the problem is but crucially, unlike the traditional DP meter system, this 
rudimentary diagnostic methodology has warned that something is wrong and therefore a 
warning is given that the meter may not be serviceable.  
 
Note that if the diagnostic system was not in place and this Venturi meter was being used in 
the traditional way, i.e. a single DP transmitter was installed between the upstream and throat 
pressure taps only, it is unlikely the traditional flow rate predictions error of -1.19% (column 3, 
row 7) caused by the transmitter drift would be noticed. However, with the use of the 
diagnostic system a warning is produced and the metering system would be given 
maintenance. Even if it then operated within the diagnostic acceptable limits but happened to 
be at the very limit of uncertainty for the traditional meters calibration (-1%) the meter is still 
0.19% more accurate due to the maintenance initiated by the diagnostic systems warning. At 
this flow rate the saving of the 0.19% of gas is a saving greater than 40,000 SCFD. In the 
likely event the system predicted the flow rate better than -1% the saving in gas would of 
course be greater.  
 
In this case it should be noted that if the DP transmitter was suspected and safety procedures 
allow, this DP meters traditional upstream to throat DP transmitter can be removed for 
servicing or replacement without taking the meter completely out of service. The metering 
system would continue to predict a flow rate to ±1% by use of equation 18, while the PPL 
transmitter is in operation.  
 
Worked Example Two: A Problem at the Throat Pressure Port  
 
Let us consider a case where the 4”, 0.6 beta ratio Venturi meter being discussed (Figure 13) 
has a problem at the throat pressure tap. In this example let us say the pressure is artificially 
low. This scenario can occur if the port has become plugged (e.g. by hydrates, salts, ice, 
scale etc) at a lower pressure than the current flow conditions, etc.. The inlet pressure and 
PPL transmitters are unaffected by this leak. The traditional and recovery DP predictions 
found by information received from the correctly operating traditional DP transmitter are 
affected by the artificially low throat pressure. For this example say the throat pressure 
reading by the DP transmitters is -0.06% of the actual correct value. The traditional DP, which 
should be read as 59680 Pa (Table 4, column 2) is now being read as 62913 Pa (column 4), 
i.e. 5.4% high. That is, the throat pressure is 3233 Pa / 13” water column low. The results are 
shown in Table 4, column 4.  
 
Note the numerical results in Table 4 match the generic predictions for this condition stated in 
Table 3. The traditional (equation 16) and expansion (equation 17) meter flow rate predictions 
are outside their uncertainty claim (see column 4, rows 7 & 10). The PPL meter flow rate 
prediction does not use information from the throat pressure port and therefore its 
performance is unaltered (see column 4, row 13). Again, in a real application the actual mass 
flow rate is unknown so this comparison would not be possible. However, comparing the three 
flow predictions (equations 16 to 18) to each other shows that the two of the three 
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comparisons do not equate to each other within the rms of their respective uncertainties. That 
is, column 4, rows 15 & 16 show that the difference between the traditional and PPL meter 
flow rates (equations 16 & 18) and the difference between the expansion and PPL meter flow 
rates (equations 17 & 18) are both > ±1.45%. Also the PLR calculated is -3.68% (column 4, 
row 18) and therefore out with the calibrated value by > ±3%. Hence, again the diagnostic 
system could signal a malfunction warning.  
 
Note that if the diagnostic system was not in place and this Venturi meter was being used in 
the traditional way, it is unlikely the traditional flow rate predictions error of +2.41% (column 4, 
row 7) would be noticed. However, if the error is found due to the diagnostic method and the 
meter then operates correctly even at the acceptable limit of +1% the meter is still 1.41% 
more accurate due to the maintenance initiated by the diagnostic systems warning. At this 
flow rate the gas prediction accuracy improves by at least 2.4e5 SCFD. 
 
Worked Example Three: A Problem at the Downstream Pressure Port  
 
The more sophisticated a system the more opportunity there is for it to malfunction. There is a 
chance the downstream pressure port will become blocked instead of the inlet or throat 
pressure tap. Let us consider the case where the same meter set up has a blocked 
downstream tap, causing an artificially higher downstream pressure (say + 0.01%). The PPL 
read when the system is operating correctly is 8421 Pa (Table 4, column 2, row 11) but now 
the PPL read is 7924 Pa (column 5, row 11). The traditional DP reading is not affected. The 
recovered DP is affected. The flow prediction results are shown in Table 4, column 5.  
 
Note the numerical results in Table 4 match the generic predictions for this condition stated in 
Table 3. The PPL (equation 18) meter flow rate prediction is outside the meters uncertainty 
claim (see column 5, row 13). For this DP meter with this example the pressure difference 
between the actual and read downstream pressure is not great enough for the expansion 
meter (equation 17) to predict outside its stated uncertainty (see column 5, row 10). The 
traditional meter flow rate prediction (equation 16) does not use information from the 
downstream pressure port and therefore its performance is unaltered (see column 5, row 7). 
Again, in a real application the actual mass flow rate is unknown so this comparison would not 
be possible. However, comparing the three flow predictions (equations 16 to 18) to each other 
shows that not all the equations equate to each other within the rms of their respective 
uncertainties. That is, column 5, rows 15 & 16 show that the difference between the traditional 
and PPL meter flow rates (equations 16 & 18) and the difference between the expansion and 
PPL meter flow rates (equations 17 & 18) are both > ±1.45%. Also the PLR calculated is -
4.46% (column 5, row 18) and therefore out with the calibrated value by > ±3%. Hence, again 
the diagnostic system would signal a warning that the system has a problem.  
 
In this situation the meter maintenance would find the problem was with the downstream port 
and that the primary flow rate calculation (equation 16) was therefore giving the correct flow 
rate (within its stated uncertainties).  Nevertheless, this situation is viewed by the author to be 
better than blindly hoping the DP meter is working correctly. Furthermore, a blockage of any 
pressure port signals that the meter is encountering adverse conditions. If one pressure port 
is blocked then it is common for the same blockage phenomena to then go on to block the 
other ports in due time. This diagnostic methodology gives a warning of such a problem as it 
begins.  
 
6.2 Examples of Damage or Foreign Objects Trapped at the Primary Element 
 
6.2.1 Beveled trailing edge orifice plate meter abnormal operations 
 
Plates have operational issues that affect performance, e.g. backward installed plates, 
plastically deformed plates, i.e. “buckled” plates, (Figure 33a), worn edges (Figure 33b), 
contamination etc.. Examples of literature discussing orifice meter errors due to abnormal 
operation include discussions by ISO [8] and GRI [9], as well as technical papers by Pritchard 
et al [10] and Brown et al [11]. These documents discuss the affect on the meter of the 
abnormality and some attempt to quantify the resulting error and offer correction factors to 
back calculate actual flow rates after the event. Brown et al [11] do mention the change in 
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PPL recorded before and after a plate was incorrectly installed, but this information was only 
utilized in an (excellent) attempt to derive the resulting discharge coefficient. The common 
trait in the literature is one of attempting to quantify the error after it has been discovered by 
some external event (such as periodic mass balance, scheduled maintenance etc.). There is 
little on how to let the DP meter system itself diagnose a problem from the moment it occurs. 
Such a diagnostic system would allow the problem to be immediately fixed thus reducing the 
requirement for corrective calculations. That is, prevention is better than cure. Let us look at 
the effects of some non-standard plate conditions on equations (16 to 18) and PLR values, in 
order to ascertain if there is any potential for diagnostics to be developed.  
 
Four 4.026”, 0.4967 beta ratio orifice plates with flange taps (at top dead centre) were tested 
at CEESI. The downstream port was at 6D from the plates. All three DP’s were individually 
read by DP transmitters within their turndown range. A baseline was required to compare the 
adverse condition tests. One plate was tested with two pressures (14 Bara & 30 Bara) across 
a combined Reynolds number range of 308,200 to 2,090,700 (i.e. a 6.8:1 turndown). The 
discharge coefficient calibration was very slightly below the RHG equation predictions 
uncertainty band. A second plate was therefore tested at the low pressure value. This data fell 
in the lower half of the RHG prediction uncertainty band. Both test procedures were reviewed 
and found to be sound. However, the ISO data for 4”, 0.5 beta ratio orifice meters appeared to 
be mainly for water flows (with no compressibility) and the maximum Reynolds number was   
< 1 million. Furthermore, the CEESI result includes the expansibility uncertainty, higher 
Reynolds numbers and the particular reference meter used had an uncertainty of ±0.53%. 
This is enough to explain the very slight differences between the RHG prediction and the 
data. The difference is also an order of magnitude less than is required to affect the purpose 
of these tests. For that reason the discharge coefficient was set at 0.6 (±0.4%). Figure 31 
shows the ISO RHG and CEESI data comparison.  
 

 
Fig 31. RHG Prediction & CEESI 4”, 0.5 Beta Ratio Data Results 

 

 
Fig 32.  CEESI 4”, Sch 40, 0.5 Beta Ratio Orifice Plate Meter Air Blow Down Base Line Test. 
 
Figure 32 shows the standard operation results. As expected, the results are similar to the 
earlier 4”, 0.5 beta ratio orifice meter data (see Figure 9). The PLR was 0.735 ±0.6%. The 
PRT diagram behaves like Figure 5b. As the discharge coefficient was fitted to ±0.4%, the 
expansion flow coefficient to ±1% and PPL coefficient to ±1.25% (all at 95% confidence), the 
maximum difference required between any two flow predictions to set off an alarm is the % 
rms of the two largest uncertainties, i.e. approximately 1.6%.  
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 33a. Buckled Plate (sharp edge upstream)        Fig 33b. Sharpness of Orifice Edge Worn.  
 

 Backward Buckled Blunt Edge 
 Plate % Error Plate % Error Plate % Error 

Equation 16 -15.43 -29.49 -8.27 
Equation 17 -10.14 -19.53 -5.27 
Equation 18 -17.79 -33.80 -9.76 

Table 5. Performance of the Three Flow Equations with the Non-Standard Plate Conditions. 
 

 Max Norm Backward Buckled Blunt Edge 
 % rms Plate % Error Plate % Error Plate % Error 

% diff Equ. 16 & 18 1.31 -2.79 -6.10 -1.63 
% diff Equ. 16 & 17 1.08 6.25 14.12 3.26 
% diff  Equ. 17 & 18 1.60 -8.51 -17.73 -4.73 

 Max Norm ±%    
PLR ±0.6 -4.86 -11.07 -2.44 

Table 6. The Three Flow Rate Predictions Inter-Comparisons. 
 
The baseline test matrix was repeated for non-standard cases. Figures 34 to 36 and Tables 5 
& 6 show the results for the plate installed backwards, the buckled plate and the blunt edge 
orifice plate scenarios. In all cases, when used traditionally, we see that the non-standard 
conditions have caused the meter to predict the flow rate out with the stated uncertainty 
(±0.4%). Traditionally there would be no diagnostic ability to indicate a problem as in 
operation the actual flow rate is unknown so the values in Table 5 are unknown. The flow rate 
predicted by equation 16 (see Table 5) would be accepted unless information external to the 
flow meter was available and checked to show some discrepancy. Also note that in all non-
standard conditions equations 17 & 18 also failed to give the correct flow rates. However, it is 
significant that equations 17 & 18 gave different erroneous flow rates. Under correct 
operation each of the three DP meter flow equations will individually give the correct flow rate 
to within their relatively small uncertainty bands. These differences between the predictions 
are known. Figures 34 to 36 and Table 6 show these results. The maximum percentage 
difference between any two predictions for standard conditions is shown in Table 6, column 1. 
The backwards installed plate, the buckled plate and the blunt edge plate all have differences 
between the flow rate predictions well in excess of the maximum allowed for standard 
conditions thereby indicating a problem. As a consequence, one diagnostic check must be 
that all three equations agree. Also note that Table 6 shows the difference between the set 
standard condition PLR of 0.735 and the actual values found during the non-standard tests. 
With the baseline tests showing a PLR uncertainty of ±0.6% all abnormal conditions tested 
show a clear discrepancy. Therefore a result showing flow rate prediction and / or PLR 
discrepancies signals that something is wrong and the meter may not be serviceable.  
 
6.2.2  Partial blockage at the throat of a cone meter  
 
The primary element of a DP meter is intrusive to the flow. Unfortunately, many flows are not 
clean. Solid objects can be found inside pipe flows, e.g. rock fragments from hydrocarbon 
reservoirs, debris from failed upstream components, welding rods, bolts and any other 
material can be accidentally left in the pipe during set up etc. Objects can therefore get  
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Fig 34. CEESI 4”, Sch 40, 0.5 Beta Ratio Orifice Plate Meter  with Plate Installed Backwards.  
 

 
Fig 35. CEESI 4”, Sch 40, 0.5 Beta Ratio Orifice Plate Meter with a Buckled Plate. 
 

 
Fig 36.  CEESI 4”, Sch 40, 0.5 Beta Ratio Orifice Plate Meter with a Blunt Edge.  
 
trapped at the primary element. This effectively changes the primary element geometry and 
therefore the characteristics of the DP meter. Foreign objects trapped at a primary element 
can cause significant metering errors.  
 
Figure 16 showed the base line performance of a 4”, 0.7499 beta ratio cone DP meter. To 
discuss the issue of foreign objects being trapped by a primary element and the potential for a 
diagnostic alarm if this was to cause a significant flow metering error, a bolt was inserted 
upstream of this meters cone. This was considered a realistic scenario. Figure 37a shows the 
test set up. (Note that all three differential pressures are being measured directly.) The flow is 
left to right. Figure 37b shows a picture of the inserted bolt. (It is covered in tape to reduce the 
potential damage caused by the lose bolt to the meters wetted surfaces.) 
 
The baseline PLR was 0.564 ±0.3%. The discharge coefficient was fitted to ±0.4%, the  
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Fig 37a. Cone DP Meter Test Set Up                Fig 37b. Cone DP Meter with Partial Blockage 
 

 Cone DP Meter  Max Norm Cone DP Meter 
 Bolt Av. % Error  % rms Bolt Av. % Error 

Equation 16 +15.33 % diff Equ. 16 & 18 ±0.57 -5.16 
Equation 17 +22.67 % diff Equ. 16 & 17 ±0.64 +6.36 
Equation 18 +9.38 % diff Equ. 17 & 18 ±0.64 -10.84 
    Bolt PLR % Error 

  % diff PLR ±0.30 -10.4 
Table 7. Performance of 4”, 0.7499 Beta Ratio Cone DP Meter with Trapped Bolt.  
 

 
Fig 38. 4”, 0.7499 Beta Ratio Cone DP Meter with Bolt Lodged at Cone Element. 
 
expansion flow coefficient to ±0.5% and PPL coefficient to ±0.4% (all at 95% confidence). 
Therefore the minimum difference required between any two flow predictions to set off an 
alarm is the % rms of the two uncertainties as shown in Table 7.  
 
Figure 38 and Tables 7 show the results of repeating the test with a bolt inserted at the cone. 
When used traditionally, the non-standard condition has caused the meter to predict a flow 
rate >15% high. Traditionally there would be no diagnostic ability to indicate a problem. The 
erroneous flow rate predicted by equation 16 (see Table 7) would be accepted unless 
information external to the meter was available and checked to show some discrepancy. 
Equations 17 & 18 also failed to give the correct flow rates. However, as previously seen with 
orifice meters, the abnormal operation resulted in equations 16, 17 & 18 giving three flow rate 
predictions that differ from each other greater than during correct meter operation. This result 
showing a flow rate prediction discrepancy between the flow rate equations signals that 
something is wrong and the flow meter is not serviceable. Alternatively, note that Table 7 
shows the difference between the set standard condition PLR of 0.564 and the actual value 
found during the non-standard test. With a PLR standard condition uncertainty of ±0.3% the 
fact that the PLR is out by -10.4% clearly indicates a problem thereby also suggesting the 
flow meter is not serviceable.  
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7 DP METER DIAGNOSTIC SENSITIVITY ISSUES 
 
The limitations of such a DP meter diagnostic system depends on several factors. One major 
factor is the uncertainty of each of the baseline flow rate equations (or the percentage 
variation of the PLR). The more precise each of the three equations 16 to 18 the more 
resolution there is to see small problems. It should be remembered that the above examples 
were kept simple by always using constant expansion and PPL flow coefficient terms. If a 
meter had expansibility terms for all three flow rate equations and each flow coefficient was 
fitted to the Reynolds number then the accuracy of each equation would improve and with it 
the resolution of the DP meter diagnostic system (i.e. smaller errors could be seen).  
 
This diagnostic methodology is wholly based on comparisons of three DP’s. DP’s are 
measured by transmitters with set ranges. Like all instrumentation, the smaller the property 
being measured, the more difficult the measurement becomes. Therefore, for a given DP 
meter, the lower the flow rate (for otherwise set conditions) the lower all three DP’s become 
and the larger the uncertainty there is on each measurement. As the diagnostic capability 
requires good DP measurements the ability of the DP meter to diagnose problems is 
enhanced by higher flow rates and degraded by lower flow rates. (Thankfully for industry the 
higher the flow rate the more important it is to diagnose incorrect flow measurement.) 
Furthermore, for any flow rate and PLR values the smaller the problem the more the 
resolution required between the DP’s to diagnose that a problem exits. Figure 39 shows a 
sketch of the typical situation if the flow rate is low and / or the malfunction of the meter is 
relatively small.  
 

 
Fig. 39. Sketch of the DP Diagnostic Methodologies Sensitivity to Reynolds Number 

 
Initial evidence suggests that the methodology can be rather sensitive to a pressure tap 
problem or DP transmitter errors as at least one DP transmitter stays reading the correct flow 
rate while the other diverges away from it. The case of the damaged meter is different as the 
meter characteristics have been changed and therefore all the readings are incorrect. A 
review of Figures 34, 35, 36 & 38 shows that all three equations have errors tending in the 
same direction. This could mean it takes a greater error than for pressure tap or DP 
transmitter errors for the difference in the equations to become apparent. However, it can be 
seen by the above examples there is still easily enough resolution for the diagnostic 
methodology to be of potential value to industry.  
 
 
8 CONCLUSIONS 
 
DP meters are relatively inexpensive, reliable, and trusted flow meters. However, most 
engineers do not associate this meter type with having any inherent diagnostic capabilities. It 
has been shown here that by considering the well understood fluid mechanics phenomena 
through out the entire meter body there is potential for the generic DP meter design to be 
further developed. This development would create redundancy factors, and through them a 
diagnostic capability could be developed which could identify meter malfunction in many 
common adverse conditions. Currently DP meter users have no way of knowing the meter is 
unserviceable without using evidence external to the metering system. This rudimentary 
diagnostic capability would be easily understood from first principles and from the evidence of 
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the multiple data sets investigated so far this generic DP meter diagnostic capability is 
relatively simple, powerful and reliable. Therefore, by applying this diagnostic methodology 
flow meter users would have greater assurance that the flow rates are correct.  
 
 
APPENDIX: THE FLOW COEFFICIENTS K,  KR,  KPPL 
 
Consideration of the flow phenomena through any DP meter indicates that the flow meter has 
a flow coefficient less than unity. (Some Venturi meters have discharge coefficients slightly 
greater than unity but this is known to be due to pressure tap imperfection effects.) In an ideal 
DP meter system the flow is reversible, incompressible and the geometric minimum cross 
sectional area (or “throat” area) is where the low pressure is located and read from. In this 
ideal situation equation 5 is applicable. In reality this ideal world does not exist. Two 
correction factors account for real world imperfections, i.e. the density correction (called the 
“expansibility”) and the discharge coefficient, which accounts for effects such as energy loss 
and the fact that often DP meter designs have a throat area used in the flow equation that is 
not the actual cross sectional flow area where the low pressure is read.  
 

  
Fig A1. Sketch of Typical Flow Through an Orifice Plate Flow Meter. 

 
For liquid flows the density remains constant and the expansion factor is unity. For gas flows 
the DP from high to low pressure ports reduces the density and hence the expansibility is less 
than unity to correct for the use of the higher inlet density value. The DP between these 
pressure ports is caused in reality by both momentum changes and friction. Equation 5 only 
accounts for the momentum changes. As pressure change due to friction is inevitable and 
always a loss (i.e. unrecoverable) the actual traditional DP read is always greater than if the 
friction pressure loss did not exist. Therefore the component of the correction factor that 
accounts for the effect of friction must reduce the equations flow rate prediction. Furthermore, 
in many DP meter designs the flow passes through the geometric throat area and continues 
expanding in fluid mechanic terms down to a smaller cross sectional area downstream (called 
a “vena contracta”) before it begins to compress as it geometrically expands back to the pipe 
area. Figure A1 indicates this for an orifice meter. The DP meter equation 5 uses the 
geometric throat area. However, this is not always the true flow cross sectional area at the 
location where the low pressure is read. Typically, the low pressure port of a DP meter is 
located in the vicinity of the vena contracta. However, the vena contracta position is known to 
vary slightly with flow conditions. Hence there is no such place as an ideal low pressure port 
location. Therefore, it is convention to use the known throat area and add a correction 
imbedded in the discharge coefficient. In virtually all real cases the low pressure port is close 
enough to the vena contracta so that the actual geometric cross sectional area is less than 
the throat area being used in equation 5. That is, a correction factor would reduce this area 
size from that of the throat area to the actual area. The result is that all three of these factors, 
i.e. expansibility, friction effects and throat area error, indicate that their individual effect is to 
make equation 5 over predict the flow rate. Hence the product of the expansibility and 
discharge coefficient, i.e., the flow coefficient, must be less than unity. That is: 
 

( ) tttidt PKEAPPCEAm Δ=−= ρρε 22
.

  --- (16)  where 1<ε , 1<dC  & 1<= dCK ε  
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Equation 6 was derived with the same assumptions as equation 5. For a stand alone 
geometric expansion meter the inlet gas flow will compress as it flows through the meter 
meaning that a “compression” factor is required. In reality the compression factor for liquid 
flows is unity and greater than unity for gas flows. If the expansion meter in question is the 
throat to downstream of a standard DP meter, where the “inlet” density being used in equation 
17 is not the throat density but the meter body inlet density, the actual gas density through the 
expansion meter will always be less than the density being used and so an expansibility term 
would be required. In this case, i.e. the case this paper is discussing, the expansion DP meter 
has its own expansibility factor which is less than unity. 
 
The geometric expansion meter has the same issue as the traditional geometric converging 
meter, with the low pressure being measured at the same flow cross sectional area. Hence, 
this actual cross sectional area is less than the throat area being used in the flow equation 17 
and a correction factor is required. It must be less than unity. Again the DP between the 
pressure ports is caused in reality by momentum changes and friction. Equation 6 only 
accounts for the momentum change. As pressure change due to friction is inevitable and 
always a loss the actual DP recovered is always less than if there was no friction. Therefore, 
a correction factor greater than unity is required to remove the friction effect. (This is the 
crucial difference between the flow coefficient and expansion flow coefficient.) The expansion 
meter imbedded in the traditional DP meter body has an expansion flow coefficient that 
incorporates the expansibility, the friction effect and area error issues. However, unlike the 
traditional meter, not all these factors are less than unity. The friction / energy loss factor is 
greater than unity. It is therefore not the case that the expansion flow coefficient must be less 
than unity. Depending on primary element design friction or the throat area correction can 
dominate and hence the expansion flow coefficient can be greater or less than unity.  
 
Note that the quantity of the PPL across a DP meter depends on flow conditions and primary 
element design. Hence the PPL can be greater or less than the gas dynamic pressure, i.e. the 
minor loss coefficient, and therefore the PPL coefficient, can be greater or less than unity. 
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1 INTRODUCTION 
 
Despite recent advances in other flow metering technologies, the simplicity, reliability and 
capital cost of the orifice plate have ensured that it remains the instrument of choice for many 
applications.  It is by far the most common flow meter in industrial service, accounting for over 
40 per cent of the market, across a wide range of sectors including oil and gas, process, 
energy and chemical.  However, where an orifice plate is used to meter a gas flow, the 
presence of small quantities of entrained liquid can present a problem as, if steps are not 
taken to allow the liquid to pass the plate, a pool will build up against the upstream face and 
undermine the metering accuracy. 
 
The most widely applied solution is to provide a liquid bypass in the form of a drain hole in the 
plate allowing liquids in a gas stream to pass through the plate.  While drain-hole plates are a 
cost-effective way of measuring gas with a low liquid content, they are not as accurate as the 
standard design.  As the extent of this inaccuracy is not well documented and as industry is 
sceptical of the existing formula, drain-hole plates are not as widely used as they might be: 
new data are therefore needed to give confidence in their use. 
 
Applications for the work include: gas off-take measurement where hydrocarbon liquids can 
be entrained, causing errors in inter-field allocation and impacting on company and tax 
revenues; gas-metering systems where water from compressor cleaning has to pass through 
the meter; and steam metering where condensate is present. 
 
There is a desire within industry to use orifice plates with drain holes, but ISO/TR 15377 [1], 
the only reference document, is based on a very simple theoretical model, and there was a 
need for experimental data to improve the understanding of the physics of flow through drain 
holes and then to revise the standard.  For example, if the flow remains partially attached in 
the drain hole the simple theoretical model on which the standard is based will not apply. 
 
The project started with a brief literature survey and contacts with those with relevant 
experience.  No published experimental data were found.  One contributor’s experience was 
that drain holes as large as are permissible in ISO/TR 15377 were normal to avoid blockage, 
another’s that drain holes either larger or smaller may be used, and another’s that drain holes 
are typically 6 to 10 mm in diameter, regardless of pipe size.  Although drain holes are 
sometimes not placed on the wall all contributors agreed that they should touch the wall.   
Blockage with solid material is a risk with drain holes.  One contributor had found that in a 
particular installation without a drain hole there was very significant accumulation of dirt; a 
new orifice plate with a drain hole solved the problem.   
 
 
2 EXPERIMENTAL WORK 
 
In order to determine the effect of drain holes on orifice plates it was important to test over a 
range of values of diameter ratio, β, drain hole diameter, dh, pipe diameter, D, plate thickness, 
E, pipe Reynolds number, ReD, and of tapping locations.  Throughout this report β remains 
the ratio of orifice diameter, d, to pipe diameter.  From physical considerations it is reasonable 
to expect that the key parameters are dh/d, β, E/dh, and L’2, where L’2 = l’2/D and l’2 is the 
distance between the downstream face of the orifice plate and the downstream pressure 
tapping. 
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To achieve an appropriate pattern of test data an existing 4-inch orifice run with flange and 
corner tappings was used with new plates with β = 0.4, 0.6 and 0.75.  These three plates all 
had E = 3 mm.  3 mm is near the middle of the permissible range of values in ISO 5167-2 [2].  
In the US E = 1

8  inch (3.175 mm) is standard.  It seemed reasonable to suppose that thicker 
plates might make a difference, as the flow within the drain hole is more likely to reattach 
within a thicker plate (relative to dh) than within a thinner one; so a plate with β = 0.6 and E = 
5 mm was manufactured.  Where E/D = 0.05 the plate is designated as thick.   
 
The maximum permissible value of dh/d in ISO/TR 15377 is 0.1; so dh = 0.1d was tested 
together with dh = 0.07d and, where possible, a higher value of dh too.  The pattern of tests is 
given in Table 1.  The drain holes (like the orifices) were inserted using spark erosion 
(sometimes called Electrical Discharge Machining).  The measured hole diameters were so 
close to the requested values that it is acceptable to assume that dh/d is exactly equal to the 
value specified in Table 1 (the error in the drain-hole diameter never changed the total open 
area of a plate by more than 0.011%).  All the plates with all the drain holes were tested in 
water, and to examine whether there was an effect of Reynolds number baselines and data 
with dh = 0.1d were obtained in gas (nitrogen) at nominal gauge pressures of 20 bar and 60 
bar. 
 

Table 1   Summary of tests 
 

D d E β Fluid dh/d dh E/dh 
mm mm mm    mm  

Water and Gas 0 0 n/a 
Water 0.07 2.863 1.05 

Water and Gas 0.1 4.091 0.73 
102.28

4 40.906 3 0.400 

Water 0.2 8.181 0.37 
Water and Gas 0 0 n/a 

Water 0.07 4.296 0.70 
Water and Gas 0.1 6.137 0.49 

102.28
4 61.37 3 0.600 

Water 0.167 10.249 0.29 
Water and Gas 0 0 n/a 

Water 0.07 4.296 1.16 
Water and Gas 0.1 6.137 0.81 

102.28
4 61.373 5 0.600 

Water 0.167 10.249 0.49 
Water and Gas 0 0 n/a 

Water 0.07 5.370 0.56 102.28
4 76.709 3 0.750 

Water and Gas 0.1 7.671 0.39 
Water 0 0 n/a 202.56 85.067 6 0.420 Water 0.1 8.507 0.71 
Water 0 0 n/a 202.56 122.12 6 0.603 Water 0.1 12.212 0.49 

 
To determine the effect of pipe diameter an 8-inch orifice run was constructed and tested in 
water with two orifice plates, β = 0.42 and 0.6.  The pattern of tests is again given in Table 1. 
 
For the water tests the orifice plates were installed in the NEL gravimetric system at least 70D 
downstream of a perforated-plate flow conditioner, itself preceded by around 10D of straight 
pipe.  There was at least 20D of straight pipe downstream of the orifice plates.  At least 15D 
of the straight pipe upstream of the orifice plate and at least 4D of that downstream were 
machined.  At flanges within 40D of the orifice plate on the upstream side dowels and ‘O’ 
rings were used.  Two differential-pressure transmitters, calibrated over the ranges 0-2 bar 
and 0-1 bar, were used in water with each pair of tappings. 
 
For the gas tests the 4-inch orifice plates were installed in Test Line 2 of the NEL high-
pressure recirculating loop.  Following a concentric reduction from the primary line size of 6-
inch there was 49D of 4-inch pipe upstream of the plate.   
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Downstream of the plate 15D of 4-inch pipe was used; the gas temperature was measured 
13.7D downstream of the plate.  A metering package consisting of four 4-inch turbine meters 
was used as the reference.  This was installed downstream of the orifice-plate test section. 
 
Two pairs of tappings were used for each test.  In single-phase flow the crucial issue is the 
location of the tappings relative to the drain hole.  In the 4-inch data the A tappings were 
flange tappings at 115° to the drain hole; the B tappings were corner tappings at 155° to the 
drain hole.  In the 8-inch data both sets of tappings were flange tappings, the A tappings at 
180° to the drain hole, the B tappings at 90° to the drain hole. 
 
The discharge coefficient, C, is obtained from the following equation 
 

  2
4

2
41

πε ρ
β

= Δ
−

m
Cq d p       (1) 

 
where qm is the mass flowrate of fluid, Δp is the differential pressure and ρ the density.  ε is 
the expansibility as given by ISO 5167-2:2003.  When a drain hole is included S, the 
percentage shift in C from that obtained with the same plate without a drain hole, was 
calculated. 
 
The data are analysed as a function of (106/ReD)0.5, and are presented over the range for 
which they are linear (at low Reynolds number they cease to be linear because of the 
increased uncertainty in the measured differential pressure).  The water data for β = 0.4 are 
presented in Figures 1A and 1B; data for dh/d = 0.2 were not stable and are not considered in 
Figures 1A and 1B; they are considered later in this report.  In Figures 2A and 2B the water 
and gas data for β = 0.4 are presented; only those gas data for which the uncertainty in 
expansibility is less than 0.067% are included.  Shifts in discharge coefficient for water as in 
Figures 1A and 1B are given in Table 2.  Shifts were evaluated by fitting lines to the data sets 
and then calculating the difference between the lines at a point near where their uncertainty is 
minimum.  The lines are close to parallel to each other, and close to parallel to the Reader-
Harris/Gallagher (1998) Equation as found in ISO 5167-2:2003; the Equation with its 
uncertainty band is plotted in Figures 1A – 2B.  Shifts are considered as simple increases in 
discharge coefficient without changing either d or β. 
 
Shifts in discharge coefficient for water for dh/d = 0.1 for the data in Figures 1A and 1B, for 
gas for each pressure for the data in Figures 2A and 2B, and for all the data in Figures 2A 
and 2B are given in Table 3 for comparison with one another.  Equivalent data for β = 0.6, β = 
0.6 (thick plate) and β = 0.75 are given in Figures 3A – 8B and are included in Tables 2 and 
3.  For the A tappings for β = 0.75 in water the estimates of shift were obtained by fitting only 
over the top of the Reynolds number range.  Table 3 shows that the shift in discharge 
coefficient has no significant dependence on Reynolds number.  Water data for β = 0.42 and 
0.6 obtained in 8-inch pipe are given in Figures 9A – 10B and are included in Table 2.   
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Table 2  -  Percentage shifts in discharge coefficient in water 

 
Percentage shift in 

discharge coefficient D (mm) E/D β dh/d Tapping 
pair A 

Tapping 
pair B 

102 0.03 0.4 0.07 0.751 0.913 
102 0.03 0.4 0.1 1.249 1.612 
102 0.03 0.6 0.07 0.840 1.528 
102 0.03 0.6 0.1 1.456 2.578 
102 0.03 0.6 0.167 3.487 5.163 
102 0.05 0.6 0.07 0.892 1.583 
102 0.05 0.6 0.1 1.575 2.778 
102 0.05 0.6 0.167 3.662 5.429 
102 0.03 0.75 0.07 1.590 2.330 
102 0.03 0.75 0.1 2.266 3.508 
203 0.03 0.42 0.1 1.512 1.258 
203 0.03 0.6 0.1 2.234 1.306 

 
 

Table 3 - Percentage shifts in discharge coefficient for those  
drain holes (all dh/d = 0.1) for which there are water and gas data 

Percentage shift in discharge coefficient 
D (mm) E/D β 

Tapping 
pair Water Gas  

(20 bar) 
Gas  

(60 bar) 
Water 

and gas 
102 0.03 0.4 A 1.249 1.225 1.221 1.215 
102 0.03 0.4 B 1.612 1.566 1.547 1.573 
102 0.03 0.6 A 1.456 1.447 1.517 1.439 
102 0.03 0.6 B 2.578 2.551 2.581 2.567 
102 0.05 0.6 A 1.575 1.574 1.565 1.585 
102 0.05 0.6 B 2.778 2.742 2.719 2.752 
102 0.03 0.75 A 2.266 2.143 2.251 2.242 
102 0.03 0.75 B 3.508 3.310 3.427 3.426 
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Figure 1A   4-inch Orifice Plate in Water, β = 0.4, A Tappings 

(drain hole 1: dh/d = 0.07; drain hole 2: dh/d = 0.1) 
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Figure 1B   4-inch Orifice Plate in Water, β = 0.4, B Tappings 

(drain hole 1: dh/d = 0.07; drain hole 2: dh/d = 0.1) 
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Figure 2A   4-inch Orifice Plate in Water and Gas, β = 0.4, A Tappings 

(drain hole dh/d = 0.1) 
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Figure 2B   4-inch Orifice Plate in Water and Gas, β = 0.4, B Tappings 

 (drain hole dh/d = 0.1) 
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Figure 3A   4-inch Orifice Plate in Water, β = 0.6, A Tappings 

(drain hole 1: dh/d = 0.07; drain hole 2: dh/d = 0.1; drain hole 3: dh/d = 0.167) 
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Figure 3B   4-inch Orifice Plate in Water, β = 0.6, B Tappings 

(drain hole 1: dh/d = 0.07; drain hole 2: dh/d = 0.1; drain hole 3: dh/d = 0.167) 
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Figure 4A   4-inch Orifice Plate in Water and Gas, β = 0.6, A Tappings 
 (drain hole dh/d = 0.1) 
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Figure 4B   4-inch Orifice Plate in Water and Gas, β = 0.6, B Tappings 

 (drain hole dh/d = 0.1) 
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Figure 5A   4-inch Orifice Plate in Water, β = 0.6, Thick Plate, A Tappings 

(drain hole 1: dh/d = 0.07; drain hole 2: dh/d = 0.1; drain hole 3: dh/d = 0.167) 
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Figure 5B   4-inch Orifice Plate in Water, β = 0.6, Thick Plate, B Tappings 

(drain hole 1: dh/d = 0.07; drain hole 2: dh/d = 0.1; drain hole 3: dh/d = 0.167) 
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Figure 6A   4-inch Orifice Plate in Water and Gas, β = 0.6, Thick Plate, A Tappings (drain 

hole dh/d = 0.1) 
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Figure 6B   4-inch Orifice Plate in Water and Gas, β = 0.6, Thick Plate, B Tappings (drain 
hole dh/d = 0.1) 
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Figure 7A   4-inch Orifice Plate in Water, β = 0.75, A Tappings 

(drain hole 1: dh/d = 0.07; drain hole 2: dh/d = 0.1) 
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Figure 7B   4-inch Orifice Plate in Water, β = 0.75, B Tappings 

(drain hole 1: dh/d = 0.07; drain hole 2: dh/d = 0.1) 
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Figure 8A   4-inch Orifice Plate in Water and Gas, β = 0.75, A Tappings  

(drain hole dh/d = 0.1) 
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Figure 8B   4-inch Orifice Plate in Water and Gas, β = 0.75, B Tappings 

 (drain hole dh/d = 0.1) 
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 Figure 9A   8-inch Orifice Plate, β = 0.42, A Tappings 
 (drain hole dh/d = 0.1) 
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Figure 9B   8-inch Orifice Plate, β = 0.42, B Tappings 

 (drain hole dh/d = 0.1) 
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 Figure 10A   8-inch Orifice Plate, β = 0.6, A Tappings 
 (drain hole dh/d = 0.1) 
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Figure 10B   8-inch Orifice Plate, β = 0.6, B Tappings 

 (drain hole dh/d = 0.1) 
 

The one exception to the general pattern in the tables and figures above is the data for β = 
0.4 and dh/d = 0.2: here the data are unstable.  This is illustrated in Figure 11 which depicts 
the differential pressure during the diversion for a single point (ReD = 48800).  For this drain 
hole E/dh = 0.37.  E/dh is greater than this value for all the rest of the data except one point 
(dh/d = 0.167 for β = 0.6 with E/D = 0.03).   
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The cause of the instability is unknown, and so it is not clear whether this instability occurs 
simply because dh/d is large or whether the fact that E/dh is small is significant too. 
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Figure 11   Differential pressure measured during the diversion for a single point  

(ReD = 48800) for β = 0.4 and drain hole dh/d = 0.2 
 
 
3 ANALYSIS 
 
The data in Tables 2 and 3 were fitted to give a general equation for the effect of drain holes.  
To do this it is helpful to plot the data in Tables 2 and 3 as in Figures 12, 13 and 14. 
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Figure 12   Shift in Discharge Coefficient Due to the Drain Hole for β = 0.4 

 



26th International North Sea Flow Measurement Workshop 
21st – 24th October 2008 

 

16 

0

1

2

3

4

5

6

0 0.005 0.01 0.015 0.02 0.025 0.03
Ratio of drain-hole to orifice area

%
 s

hi
ft 

in
 C

A: 4" thick flange 115 B: 4" thick corner 155
A: 4" thin flange 115 B: 4" thin corner 155
A: 8" flange top B: 8" flange side
A: gas 4" thin flange 115 B: gas 4" thin corner 155
A: gas 4" thick flange 115 B: gas 4" thick corner 155

 
Figure 13   Shift in Discharge Coefficient Due to the Drain Hole for β = 0.6 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.002 0.004 0.006 0.008 0.01 0.012

Ratio of drain-hole to orifice area

%
 s

hi
ft 

in
 C

A: 4" flange 115

B: 4" corner 155

A: gas 4" flange 115

B: gas 4" corner 155

 
Figure 14   Shift in Discharge Coefficient Due to the Drain Hole for β = 0.75 

 
The water data for E/D = 0.03 are then fitted: the data in Figures 12 - 14 show curvature as a 
function of the ratio of the drain-hole area to the orifice area (=(dh/d)2); they also show an 
increase in shift with α, the angle (in degrees) between the tapping and the radius from the 
centre of the pipe to the centre of the drain hole, and this increase is greater for larger β.  
 
There is also a dependence on the axial location of the downstream tapping: CFD (not 
reported here) suggests that rather than work in terms of L’2, the number of pipe diameters to 
the downstream pressure tapping, it might be more appropriate to work in terms of M’2, the 
number of dam heights to the downstream pressure tapping, (= 22 /(1 )L β′ − ).  When the 
orifice-plate discharge-coefficient equation was derived it was found better to work in terms of 
L’2 than in terms of M’2.  A fitted equation for S that meets these requirements is given in the 
following equation: 
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1.34

2
2 2 = (0.97 - 0.43 0.18 )(1 (0.004 0.035( 0.4)) ) 10 hd

S M M
d

β α ⎛ ⎞′ ′+ + + − ⎜ ⎟
⎝ ⎠

                (2) 

 
All the deviations from Equation (2) for the water data in Tables 2 and 3 are shown in Figure 
15.  From Table 3, as stated previously, there appears to be no significant effect of Reynolds 
number.  The effect of increasing the plate thickness is quite small: from Table 2 the shifts in 
Equation (2) are multiplied by 1.06 if E/D = 0.05.  Owing to the number of parameters in the 
equation additional data would be helpful, especially if dh/d were to be greater than 0.1. 
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Figure 15   Deviations of the data in Table 2 from Equation (2) 

 
Equation (2) is very different from the equation in ISO/TR 15377, and so a change in ISO/TR 
15377 is clearly required.  The deviations of the data in Table 2 from the equation in ISO/TR 
15377 are shown in Figure 16.  It should be noted that the equation in ISO/TR 15377 is only 
to be used for dh/d ≤ 0.1, which corresponds to a ratio of drain-hole to orifice area of 0.01. 
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Figure 16   Deviations of the data in Table 2 from ISO/TR 15377 
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4 CONCLUSIONS 
 
Tests were carried out in two pipe sizes (4 and 8 inch), with up to three diameter ratios per 
pipe size, and up to three drain hole diameters per plate (in addition to a baseline without a 
drainhole).  Flange and corner tappings were used in the 4-inch run.  Flange tappings on both 
the side and the top of the pipe were used in the 8-inch run. 
 
The effect of the drain holes on orifice metering has been measured and an equation derived.  
This equation fits the shifts in discharge coefficient to about 0.25%; the errors with the 
equation in ISO/TR 15377 can be up to 2.5%, and so an amendment to ISO/TR 15377 will be 
required.  By tests in both water and gas the effect of Reynolds number has been shown to 
be small.  The agreement between water and gas data is remarkably good for the baseline 
data also.  From testing a plate thicker than normal but within the requirements of ISO 5167-2 
the effect of plate thickness appears also to be quite small.  Owing to the number of 
parameters in the equation that are still significant collection of further data is desirable. 
 
 
5 NOTATION 
 
C Discharge coefficient - 
D Upstream pipe diameter m 
d Orifice diameter m 
dh Drain hole diameter m 
E Orifice plate thickness m 
L’2 Dimensionless distance from 

downstream face of plate to 
downstream pressure tapping  

 (= l’2/D)  - 
l’2 Distance from downstream face 
 of plate to downstream pressure 

tapping m 

M’2 Number of dam heights to 
downstream pressure tapping 

 (= 22 /(1 )L β′ − ) - 
qm Mass flowrate kg/s 
ReD Pipe Reynolds number - 
S Percentage shift in discharge 
 coefficient - 
α Angle between tapping and 
 radius from centre of pipe to  
 centre of drain hole - 
β Orifice plate diameter ratio (= d/D) - 
Δp Differential pressure Pa 
ε Expansibility - 
ρ Density kg/m3 
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