FISCAL METERING SYSTEM DESIGN

- some design evaluations with respect to lifecycle cost/benefit

NFOGM Temadag, Sola, 22 March 2012
Morten Marstein, Senior Systems Engineer, FMC Kongsberg Metering AS
Design Categories

Case: Liquid Metering Station

• Design
 – Conventional liquid metering station with volume prover
 – Liquid metering station with master meter and portable prover connections
 – Liquid metering station with master meter (no inline proving)
 – Multi-phase metering

• Configuration
 – Serial configuration
 – Parallel configuration
 – Z-configuration
Evaluation Criteria

• Price and delivery time (project phase)
 – Cost of parts, engineering, complexity

• Accuracy
 – Conformance to fiscal accuracy requirements

• Functionality
 – Flow range, online maintenance, online calibration, online diagnostics

• Reliability / Maintenance cost
 – Maintenance and diagnostics facilities, complexity, maintenance intervals, knowledge for maintenance
Evaluation – Design Categories

+ Advantage
- Disadvantage

<table>
<thead>
<tr>
<th></th>
<th>Price and delivery time</th>
<th>Accuracy</th>
<th>Functionality</th>
<th>Reliability / Maintenance</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional with volume prover</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Master meter and portable prover connections</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Inline meters only</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>--</td>
</tr>
<tr>
<td>Multi-phase metering</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Liquid Metering Station with Prover
Liquid Metering Station with Master Meters
Liquid USM Metering Station
- no master meter or proving facility
Evaluation – Design Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Price and delivery time</th>
<th>Accuracy</th>
<th>Functionality</th>
<th>Reliability / Maintenance</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial configuration</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Parallel configuration</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Z-configuration</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
</tbody>
</table>
Serial vs. Parallel Configuration

Two meters in series

Two meters in parallel

- Correlation vs. Rel. comb. std. uncertainty [%]
- Percentage of flow in pipe 2 vs. Rel. comb. std. uncertainty [%]
Flow Measurement Technologies

- **Liquid**
 - PD (Positive Displacement) Meters
 - Turbine Meters
 - Ultrasonic Meters
 - Coriolis Meters

- **Gas**
 - DP Meters (Orifice, Venturi)
 - Cone Meters
 - Ultrasonic
 - Coriolis
Evaluation – Flow Measurement Technologies - Liquid

<table>
<thead>
<tr>
<th></th>
<th>Price and delivery time</th>
<th>Accuracy</th>
<th>Functionality</th>
<th>Reliability / Maintenance</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid PD</td>
<td>-</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Liquid Turbine</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Liquid Ultrasonic</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Liquid Coriolis</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+++</td>
</tr>
</tbody>
</table>

Notes:
- `+` indicates high performance.
- `-` indicates low performance.

Summary:
- Liquid PD: Low performance across all metrics.
- Liquid Turbine: High performance in price and delivery time, medium in accuracy.
- Liquid Ultrasonic: Low performance in all metrics.
- Liquid Coriolis: High performance in price and delivery time, medium in accuracy and reliability/maintenance, highest in functionality.
PD Metering Station
Coriolis Metering Station
Evaluation – Flow Measurement Technologies - Gas

<table>
<thead>
<tr>
<th></th>
<th>Price and delivery time</th>
<th>Accuracy</th>
<th>Functionality</th>
<th>Reliability / Maintenance</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas DP</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Gas Cone</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Gas Ultrasonic</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Gas Coriolis</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
</tbody>
</table>
Gas Metering Stations
Important Issues in the Project Phase

• Metering knowledge at Operator / Contractor
• Calibration arrangement (provers, master meters)
• Proven technology
• Combine measurement techniques
• Quality (fluid property) measurements

Preferred solution:

• **Solid technical design based on proven technology including inline calibration/verification arrangement**