Fiscal metering of oil with high water fraction. Sensitivity study for a turbine meter - based metering station

Kjell-Eivind Frøysa, Anders Hallanger and Per Lunde

CM Instrumentation

Christian Michelsen Research AS, Bergen, Norway

Presented at NFOGMs Temadag 2007, Rica Grand Hotell, Oslo, Friday March 16, 2007

Amplitude [V]

-0.4

Contents

Introduction

- Objectives and project plans
- Basis documents and regulations/requirements
- Specifications for sensitivity study

Pure oil

- Functional relationship
- Sampling-based WIO treatment
 - Functional relationship
 - Sensitivity study
- Continuos measurement of WIO
 - Functional relationship
 - Sensitivity study
- Conclusions

Introduction

Background

- Many oil fields in the North Sea are coming into their late production phase.
- Produced water is an increasing issue, and has increased focus by industry.
- Up to 20 % WIO (by volume) experienced in North Sea fiscal oil metering stations.
- Question: what are the most critical components of fiscal oil metering stations with respect to WIO?
- Phase 1:
 - NFOGM initiated project
 - Turbine meter based fiscal oil metering station
 - Sensitivity study
 - October 2006 April 2007

Reference group

- Trond Folkestad,
- John Eide,
- Trond Hjorteland,
- Sidsel Corneliussen,
- Svein Neumann,
- Einar Halvorsen.

Objectives, phase 1

- Carry out a sensitivity study for a turbine meter based fiscal metering station for volumetric liquid rate, in order to
- Identify the parts of the metering station with highest influence by high water content in the oil on the resulting liquid- and oil flow rate (measurement uncertainty and systematic deviations).

Basis documents

- NORSOK standard I-105: Fiscal measurement systems for hydrocarbon liquids, Draft 2 for Edition 3, Standards Norway, Oslo, September 2006 (Draft).
- ISO 3171: "Petroleum liquids Automatic pipeline sampling". Second edition, 1988.
- Dahl et al.: "Handbook of water fraction metering, Rev. 2", NFOGM Handbook 2004 [WIO Handbook].
- Dahl et al.: "Handbook of uncertainty calculations. Fiscal orifice gas and turbine oil metering stations", NFOGM-NPD-NIF Handbook, Rev 2, 2003 [Unc TM Handbook].

Specifications

Specifications for sensitivity study – fiscal oil turbine metering station -equipment

- Prover
- Turbine meter
- Densitometer
- Pressure transmitters
- Temperature transmitters
- Water-in-oil measurement:
 - Sampling devices

or

- Online water in oil meter
- Example considered here: 8" pipe
- Equipment scenario agreed on with reference group

Specifications for sensitivity study -fluids

Calculation example agreed on with reference group

Oil density:	830 kg/m³	at 15 °C, 1 atm
Oil viscosity:	6 cSt	at 40 °C
Water density:	1020 kg/m³	at 15 °C, 1 atm
Operating flow rate:	1000 m³/h	at 15 °C, 1 atm
Volumetric fraction of water:	0 – 20 %	at line conditions

Reynolds number range:

230 000 - 290 000

Specifications for sensitivity study -Assumptions, liquids

- No free gas (bubbles or layer) present in the liquids/pipe
- Homogeneously distributed water in oil.

In conformity with

- ISO 3171: "Petroleum liquids Automatic pipeline sampling". Second edition, 1988.
- **WIO Handbook:** "Handbook of water fraction metering, Rev. 2".
- As agreed on with reference group

Homogeneity:

- Water distributed as droplets throughout the oil phase
- Volumetric water fraction is equal throughout the pipe cross section (within ±5 % difference top-bottom ISO 3171)
- The turbulence in the pipe will maintain the homogeneity of the water-oil mixture
- A lowest flow rate exists where this is valid ISO 3171
- Vertical flow enhances homogeneity
- Use of mixing enhances homogeneity

CM Instrumentation

Specifications for sensitivity study

-pressure and temperature

	Fram Vest	Ose- berg D	Ose- berg A	Unc TM Handbook
Operating (line) conditions				
Pressure	24.44	42.66	22.29	18 barg
Temperature	36.70	41.01	48.86	65 °C
Densitometer				
Pressure	24.66	43.12	17.76	17.5 barg
Temperature	36.60	38.68	48.93	63 °C

Prover (average at inlet and outlet)

Pressure	1 bar less than operating line conditions
Temperature	1 °C less than operating line conditions

- **WIO-meter**
 - Pressure
 - Temperature

as operating line conditions as operating line conditions

CM Instrumentation

Pure oil – background info (functional relationship)

13

Turbine oil metering station – Pure oil Functional relationship

NFOGM "Handbook of uncertainty calculations. Fiscal orifice gas and turbine oil metering stations", Rev. 2 (March 2003)

$$Q_V = \frac{MR_m}{K} \cdot \left[C_{tlm} \cdot C_{plm}\right]_{line} \cdot 3600$$

Q_V	standard oil volume flow rate	[Sm ³ /h]
MR _m	number of pulses counted by the turbine meter during the metering period	[1/s]
K	K-Factor	[1/Sm ³]
C _{tlm}	volume correction factor for the effect of temperature on the liquid in the turbine meter	[-]
C_{plm}	volume correction factor for the effect of pressure on the liquid in the turbine meter	[-]

MAI

Turbine oil metering station – Pure oil Functional relationship

NFOGM "Handbook of uncertainty calculations. Fiscal orifice gas and turbine oil metering stations", Rev. 2 (March 2003)

K-factor: $K = \frac{MR_p}{BV} \cdot \left[\frac{(C_{tlm} \cdot C_{plm})}{(C_{tlp} \cdot C_{plp}) \cdot (C_{tsp} \cdot C_{psp})} \right]_{proving}$ MR_p number of pulses counted by the turbine meter
during the proving periodBVbase volume of prover

- C_{tlp} volume correction factor for the effect of temperature on the liquid [-] in the prover
- C_{plp} volume correction factor for the effect of pressure on the liquid [-] in the prover
- C_{tsp} volume correction factor for the effect of temperature on prover steel [-]

 C_{psp}

volume correction factor for the effect of pressure on prover steel [-]

15

CM Instrumentation

[-]

 $[m^3]$

Turbine oil metering station – No treatment of WIO¹⁶

Volume correction factors for temp. effects on the liquid:

$$C_{tlm}, C_{tlp}, C_{tld}$$

$$C_{tl} = e^{-\alpha \cdot \Delta T - 0.8\alpha^2 \cdot \Delta T^2}, \quad \alpha = \frac{K_0}{\rho_{ref}^2} + \frac{K_1}{\rho_{ref}}, \quad \Delta T = T - 15$$

C_{tl}	volume correction factor, from temperature-in-question to std. ref. temp.	[-]
α	coefficient	[1/°C]
K_0	constant (API MPMS 11.1.54.7.1)	$[kg/m^{3/o}C]$
K_{l}	constant (API MPMS 11.1.54.7.1)	$[kg/m^{3/o}C]$
$ ho_{\scriptscriptstyle ref}$	density at standard reference conditions (15 °C and 101.325 kPa)	[kg/Sm ³]
ΔT	difference between temperature-in-question and std. ref. temperature	[°C]
Т	temperature-in-question (in meter, prover, or densitometer)	[°C]

The constants K_i depend on the oil. Given by:

- API-ATSM-IP Petroleum Measurement Tables, or
- Laboratory testing

Turbine oil metering station – No treatment of WIO¹⁷

Volume correction factors for pressure effects on the liquid: C_{plm} , C_{plp} , C_{pld} $C_{pl} = \frac{1}{1 - (P - P_e)F}$, $P_e \ge 0$, $F = 10^{-6} \cdot e^{A + B \cdot T + \rho_{ref}^{-2} (C + D \cdot T)}$

C_{pl}	volume correction factor, from pressure-in-question to std. ref. pressure		[-]
Р	pressure-in-question (in meter, prover, or densitometer)		[kPa-g]
P_{e}	equilibrium vapour pressure		[kPa-a]
F	compressibility factor for the liquid		[1/kPa]
A	constant = -1.62080	(Cf. API MPMS 11.2.1M)	[-]
В	constant = 0.00021592	(Cf. API MPMS 11.2.1M)	[-]
С	constant = 0.87096	(Cf. API MPMS 11.2.1M)	[-]
D	constant = 0.0042092	(Cf. API MPMS 11.2.1M	[-]

Turbine oil metering station – Pure oil

NFOGM "Handbook of uncertainty calculations. Fiscal orifice gas and turbine oil metering stations", Rev. 2 (March 2003)

Calculation of density at standard reference conditions:

$$\rho_{ref} = \frac{\rho_{PT}}{C_{tld} \cdot C_{pld}}$$

$ ho_{ref}$	density standard reference conditions (15 °C and 101.325 kPa)	[kg/Sm ³]
$ ho_{\scriptscriptstyle PT}$	density at line conditions	$[kg/m^3]$
C_{tld}	volume correction factor for the effect of temperature on the liquid in the densitometer	[-]
C_{pld}	volume correction factor for the effect of pressure on the liquid in the densitometer	[-]

 ρ_{ref} coupled with C_{tld} and $C_{pld} \implies$ iteration necessary

CM Instrumentation

- functional relationship (agreed on with reference group)

Proving:

Turbine metering (line conditions):

Density measurement:

$$K = \frac{MR_{p}}{BV} \frac{C_{tol}C_{pol}}{C_{top}C_{pop}C_{tsp}C_{psp}}$$
$$q_{v}^{mix} = 3600 \frac{MR_{m}}{K}$$

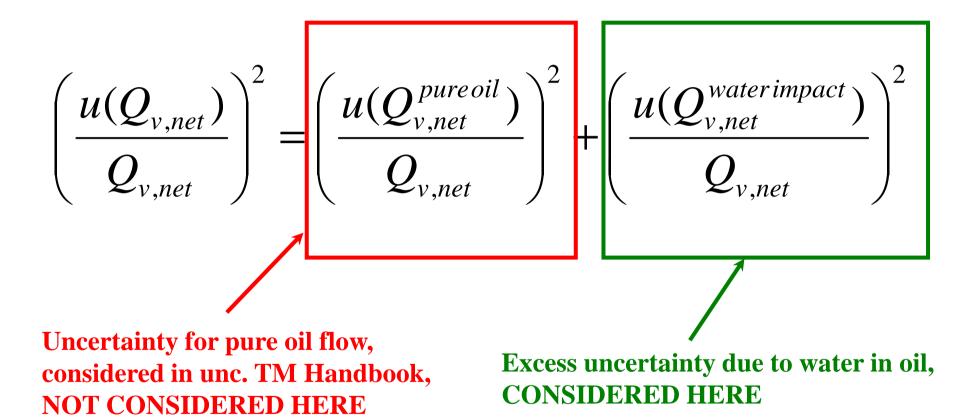
$$\rho_{line}^{mix} = \frac{\left(C_{tol}C_{pol}\right)_{line}}{\left(C_{tol}C_{pol}\right)_{dens}}\rho_{dens}^{mix}$$

Mass flow rate of mixture:

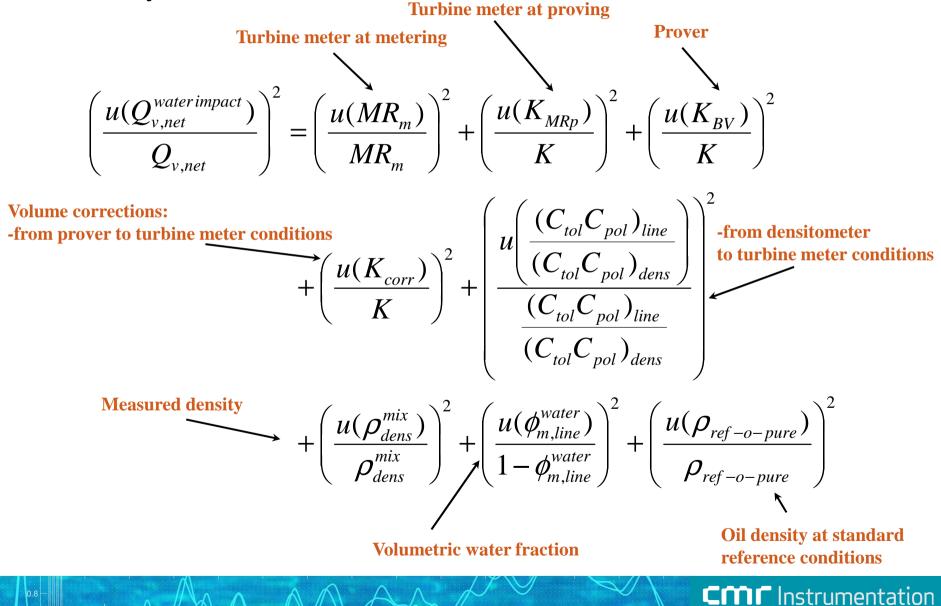
$$q_m^{mix} = q_v^{mix} \rho_{line}^{mix}$$

Mass flow rate of oil:

$$q_m^{net} = q_m^{mix} \left(1 - \phi_{m,line}^{water} \right)$$


 q_m^{net}

 $ho_{{}_{ref-o-pure}}$

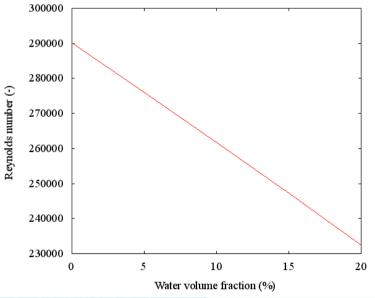

Standard volumetric flow rate of oil: $Q_{v,net}$

CM Instrumentation

Uncertainty model for standard volumetric flow rate of oil:

Uncertainty model:

Additional uncertainty contribution, turbine:


What is the **effect on the turbine meter itself** (pulse count pr volume) of water in the oil?

 $\left(\frac{u(K_{MRp})}{K}\right)^2 \left(\frac{u(MR_m)}{MR}\right)^2$

Questionare to 3 vendors, 1 answer

Turbine meters not tested with water in oil

- Assumed to influence mainly through Reynolds number (increased viscosity)
- Conventional turbine meters expected to be more sensitive to water in oil than helical turbine meters
- Linearity +/- 0.15 % for oil with Reynolds numbers from 50 000 to 500 000. Same with water in oil.
- Linearity reasonable good down to 25 000.
- For lower Reynolds numbers: modification of the turbine.
- Here: Re = 230 000 290 000.
- Conclusion: Influence typical less than 0.15 % (95 % conf. level).

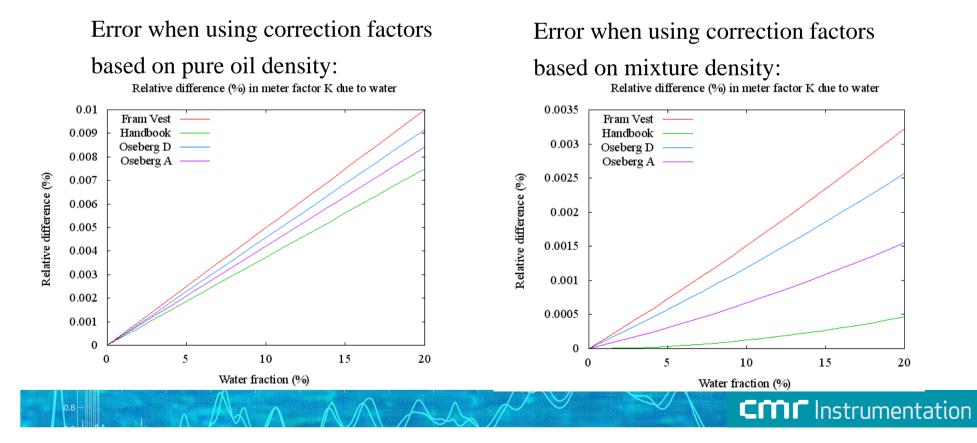
CMF Instrumentation

Additional uncertainty contribution, prover:

$$\left(\frac{u(K_{BV})}{K}\right)^2$$

What is the **effect on the prover itself** (detection of base volume) of water in the oil?

- Questionare to 1 vendor, no answer
- The sensitivity study shows that if this uncertainty contribution is less than about 0.5 % for WIO = 20 %, it can be neglected.
- On basis of discussions in the reference group, this effect has been neglected in the sensitivity study.



Sampling-based WIO treatment $\frac{u(K_{corr})}{K}$

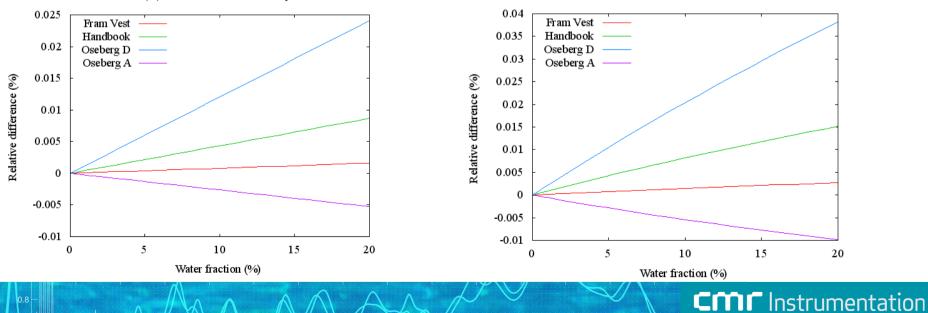
Additional uncertainty contribution, vol. corr. from prover to turbine:

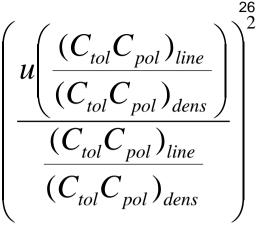
Effects:

- Using oil correction factors instead of water/oil mixture correction factors
- Possible effect of using mixture density instead of oil density
- Conclusion: Less than 0.01 % influence (100 % conf. level, rect. dist. func.)

Additional uncertainty contribution, vol. corr. from densitometer to turbine:

Effects:


- Using oil corr. factors instead of water/oil mixture corr. factors
- Possible effect of using mixture density instead of oil density
- Conclusion: Less than 0.04 % influence (100 % conf. level, rect. dist. func.)


Error when using correction factors based on pure oil density:

Relative difference (%) in transformation of density to meter conditions

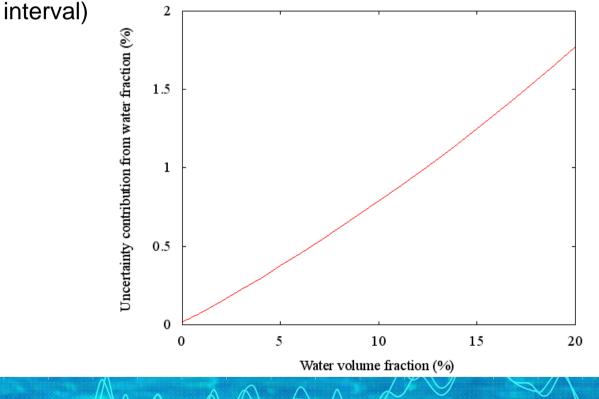
Error when using correction factors based on mixture density:

Relative difference (%) in transformation of density to meter conditions

Additional uncertainty contribution, density:

 $\left(\frac{u(\rho_{dens}^{mix})}{\rho_{d}^{mix}}\right)$

- What is the effect on the density meter itself (measured mixture density) of water in the oil?
- Questionare to 1 vendor, 1 answer
 - "... any liquid ... is going to be measured, be it homogeneous or nonhomogeneous."
 - "...we will measure the combined density of the water-in-oil mixture without any loss in density performance."
- The sensitivity study shows that if this uncertainty contribution is less than about 0.5 % for WIO = 20 %, it can be neglected.
- In the sensitivity study, this effect has been neglected.



Additional uncertainty contribution, water fraction, (sampling and analysis):

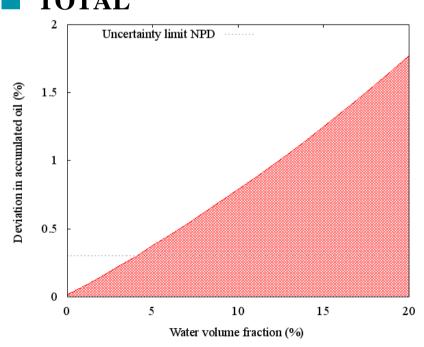
$$\left(\frac{u(\phi_{w,line}^{water})}{1-\phi_{w,line}^{water}}\right)^2$$

Uncertainty of the sample-based weight fraction of water at line conditions:

- ISO 3171 Chapter 16.5.2, example 2
- Uncertainty due to random and systematic effects (95 % confidence

CMF Instrumentation

Additional uncertainty contribution, oil density at standard reference conditions:


 $\left(\frac{u(\rho_{ref-o-pure})}{\rho_{ref-o-pure}}\right)^2$

- From laboratory analyses.
- Assume complete separation.
- Measurement on pure oil.
- Water does not influence on the measurement
- Conclusion: 0 % influence

Sensitivity summary for 20 % water in oil relative to pure oil:

Turbine:	0.15 %	(95 % c.l.)
K-factor, turbine:	0.15 %	(95 % c.l.)
K-factor, prover:	0 %	(95 % c.l.)
K-factor, volume correction:	0.01 %	(100 % c.l.)
Vol. correction densitometer to turbine:	0.04 %	(100 % c.l.)
Density measurement:	0 %	(95 % c.l.)
Water fraction:	1.77 %	(95 % c.l.)
Reference oil density:	0 %	(95 % c.l.)
TOTAL	1.78 %	(95 % c.l.)

Assumed "linear" dependency of unc. contributions on WIO

CM Instrumentation

Continuous measurement of WIO -functional relationship according to I-105

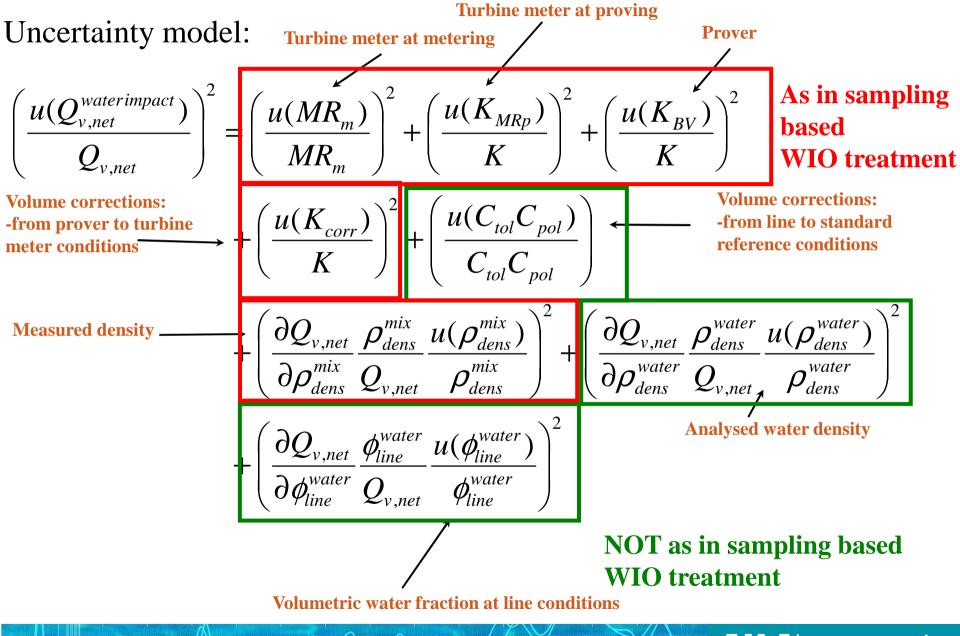
Proving:

$$K = \frac{MR_p}{BV} \frac{C_{tol}C_{pol}}{C_{top}C_{pop}C_{tsp}C_{psp}}$$

Water fraction at line conditions (similar for density conditions):

 $\phi_{line}^{water} = \left[1 + \frac{(1 - \phi_{ref}^{water})C_{twl}C_{pwl}}{\phi_{ref}^{water}C_{tol}C_{pol}}\right]^{-1} \qquad \phi_{ref}^{water} = \left[1 + \frac{(1 - \phi_{WIOmeter}^{water})C_{tow}C_{pow}}{\psi_{WIOmeter}}\right]^{-1}$ Density at reference conditions: $\rho_{ref-o-pure} = \frac{\phi_{dens}^{mix} - \phi_{dens}^{water}}{(1 - \phi_{water}^{mix})C_{dens}} = \frac{\phi_{dens}^{mix}}{(1 - \phi_{water}^{mix})C_{dens}} = \frac{\phi_{dens}^{mix}}}{(1 - \phi_{water}^{mix})C_{den$

Turbine metering:


$$\rho_{ref-o-pure} = \frac{\rho_{dens}^{mix} - \phi_{dens}^{water} \rho_{dens}^{water}}{(1 - \phi_{dens}^{water})C_{tod}C_{pod}}$$
$$q_v^{mix} = 3600 \frac{MR_m}{K}$$

Volumetric flow rate of oil:

$$q_v^{net} = q_v^{mix} \left(1 - \phi_{line}^{water} \right)$$

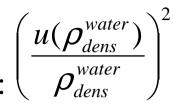
Standard volumetric flow rate of oil: $Q_{v,net} = q_v^{net} C_{tol} C_{pol}$

CMF Instrumentation

CM Instrumentation

Additional uncertainty contribution, volume correction from line to standard reference conditions:

 $\left(\frac{u(C_{tol}C_{pol})}{C_{cl}C_{rol}}\right)^{2}$

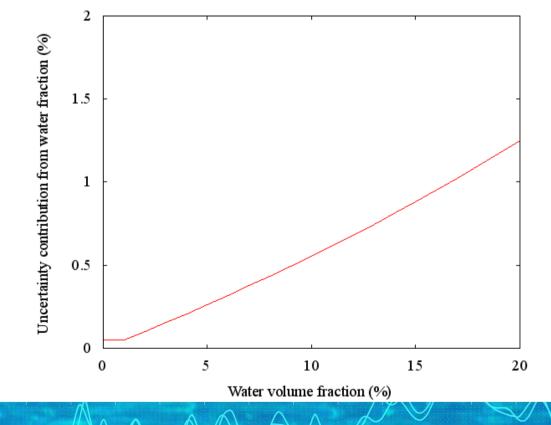

This is due to uncertainty in oil density.

- Typical number for oil density uncertainty: less than 5 kg/m³ (95 % c.l.) at WIO = 20 %.
- Influence on volume correction factor: 0.06 %

Additional uncertainty contribution, water density: $\left(\frac{u(\rho_{dens}^{water})}{\rho_{dens}^{water}}\right)^2$

This is based on laboratory analysis.

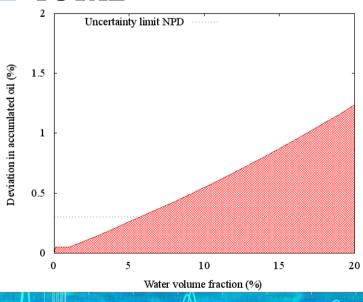
- Uncertainty contributions:
 - Degree of separation on laboratory
 - Analysis instrumentation
- Conclusions:
 - 1 % with 95 % confidence level chosen not to underestimate for measured water density.
 - Uncertainty contribution on vol. flow rate (95 % c.l.): 0 % (indirect through other contributions).


Additional uncertainty contribution, water density:

 $\partial Q_{v,net}$ $\phi_{line}^{water} u(\phi_{line}^{water})$ $\partial \phi_{line}^{water}$ water φ_{line}

- I-105: Uncertainty with 95 % conf. level (in agreement with Roxar WIOM specs. in the range 0-20 %):
- 0.05 % abs volume fraction,
- 5 % of reading,

for volume fractions 0 - 1 %.


for volume fractions above 1 %

CMF Instrumentation

Sensitivity summary for 20 % water in oil relative to pure oil:

Turbine:	0.15 %	(95 % c.l.)
K-factor, turbine:	0.15 %	(95 % c.l.)
K-factor, prover:	0 %	(95 % c.l.)
K-factor, volume correction:	0.01 %	(100 % c.l.)
Vol. correction line to standard:	0.06 %	(100 % c.l.)
Mix. density measurement:	0 %	(95 % c.l.)
Water density:	0 %	(95 % c.l.)
Water fraction:	1.24 %	(95 % c.l.)
	1.26 %	(95 % c.l.)

Assumed "linear" dependency of unc. contributions on WIO

Preliminary conclusions (study not fully completed)

- Fiscal turbine based oil metering station
- Volumetric flow rate of oil at standard reference conditions
- Cases studied:
 - Sampling based WIO treatment
 - Continuous measurement of WIO
- 0 20 % WIO
- Excess uncertainty due to the water in oil is studied
- Calculation examples from various North Sea fields
- The uncertainty in the WIO is the dominating term
- Results at 20 % WIO:
 - about 1.8 % uncertainty (95 % c.l.) for sampling based WIO treatment
 - about 1.2 % uncertainty (95 % c.l.) for continuous measurement of WIO