

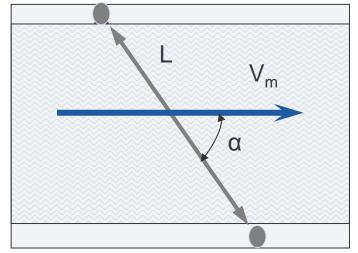
Pico Brand 2015-03-19 Are liquid ultrasonic flowmeters independent of fluid properties? Pico Brand and Jan G. Drenthen

1. Principle of operation

- 2. Fluid dynamics influencing the performance
- 3. Elimination of those influences
- 4. Practical calibrations
- 5. Long term stability ultrasonic flow meters.

ALTOSONIC Agenda

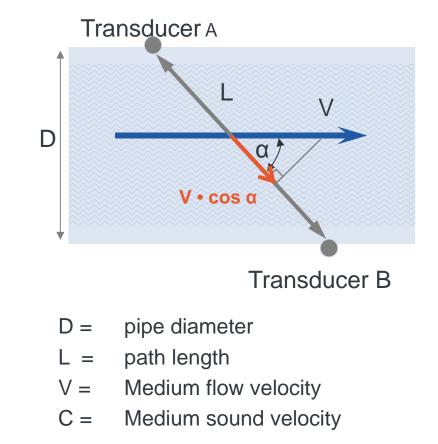
▶ achieve more


Measuring principle

Acoustic signals are transmitted and received along measuring path L.

A sound wave going *downstream* with the flow, travels faster than a sound wave going *upstream* against the flow.

The difference in transit time is directly proportional to the flow velocity of the liquid.

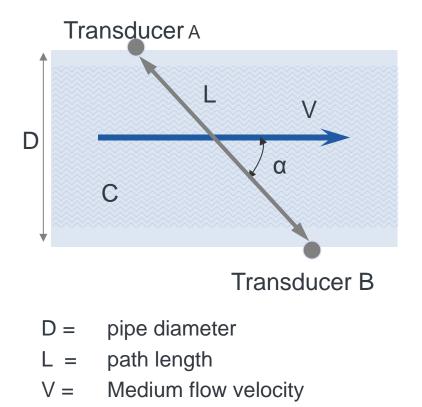

Transducer B

▶ achieve more

Measuring principle Transit time

 $T = \frac{distance}{speed}$ Upstream $T_{ab} = \frac{L}{C + v \cos(\alpha)}$

Downstream
T_{ba} =
$$\frac{L}{C - v \cos(\alpha)}$$


▶ achieve more

Measuring principle Flow calculation

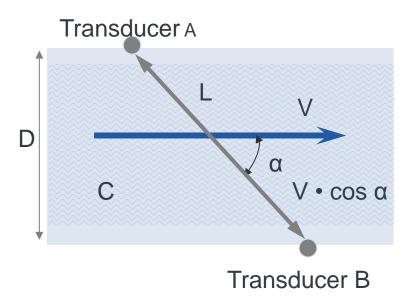
$$V = \frac{L}{2 \cos(\alpha)} \times \frac{t_{ba} - tab}{t_{ba} \times tab}$$
$$A = \frac{\pi D^2}{4}$$
$$L = \frac{D}{\sin(\alpha)}$$

Flow = *velocity* * *area*

 $Flow = \frac{\pi D^3}{4\sin(2\alpha)} \times \frac{t_{ba} - tab}{t_{ba} \times tab}$

C = Medium sound velocity

achieve more


Measuring principle

Flow =
$$\frac{\pi D^3}{4\sin(2\alpha)} \times \frac{t_{ba} - tab}{t_{ba} \times tab}$$

Calibration Factor (= Calibration constant) is determined during calibration

Independent of:

- Density
- Temperature
- Viscosity
- Velocity of sound

- D = pipe diameter
- L = path length
- V = Medium flow velocity
- C = Medium sound velocity

1. Principle of operation

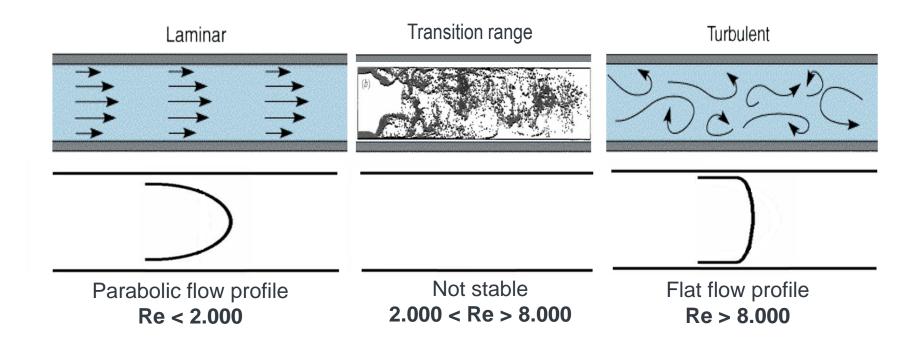
- 2. Fluid dynamics influencing the performance
- 3. Elimination of those influences
- 4. Practical calibrations
- 5. Long term stability ultrasonic flow meters.

ALTOSONIC Agenda

Reynolds Number

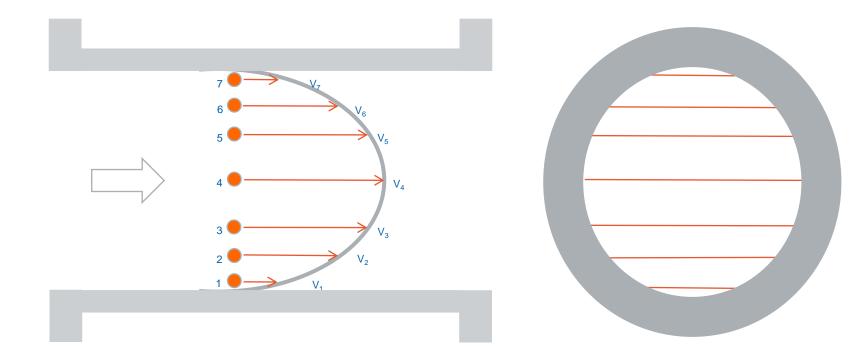
Reynolds number (Re) is a dimensionless quantity that is used to help predict similar flow patterns in different fluid flow situations.

Reynolds number is defined as the ratio of inertial forces to viscous forces

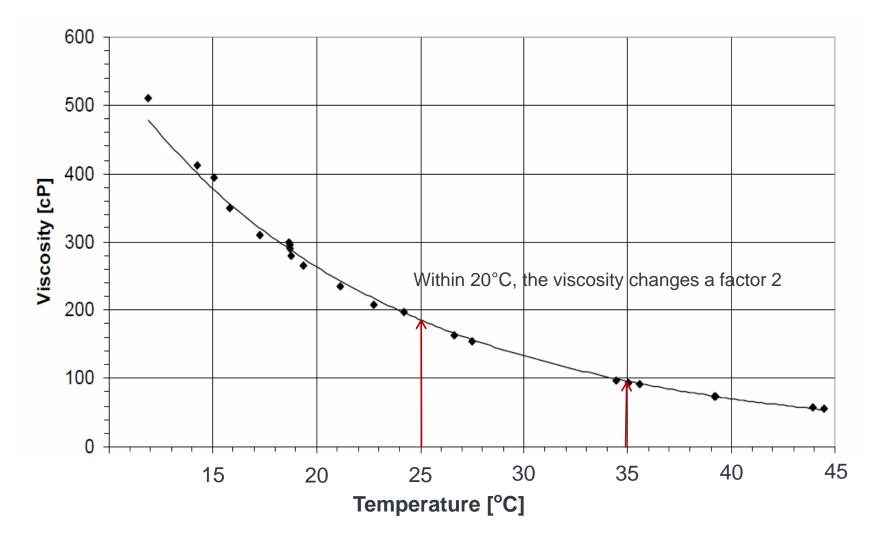

$$R_e = \frac{\nu x D}{\mu}$$

$$\overline{U}$$
 = Velocity

$$\mu$$
 = Kinematic viscosity

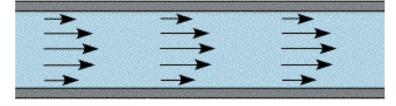


Flow regimes

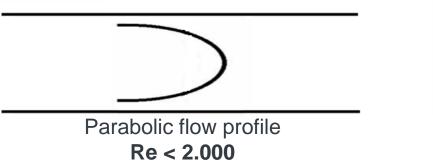

▶ achieve more

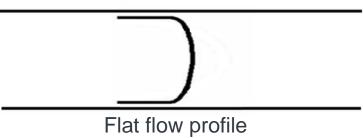
Average velocity measurement

▶ achieve more


Temperature dependence of crudes

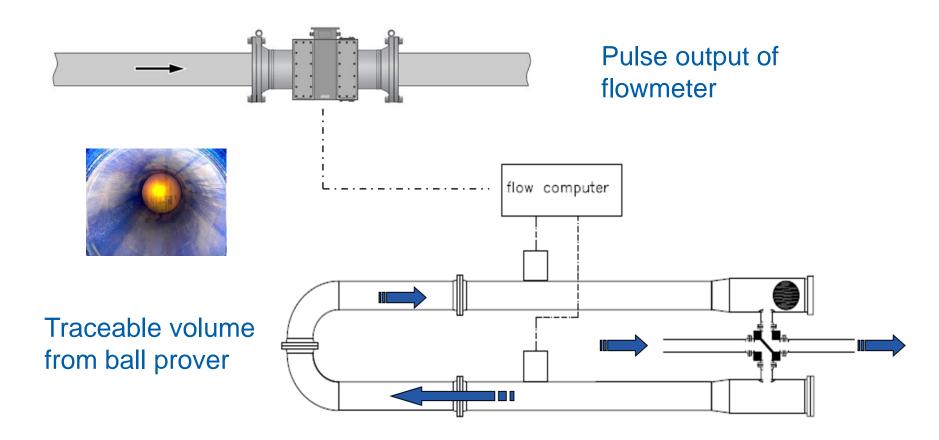
Average flow depending on flow profile


Example 8"	Flow [m3/h]	Viscosity [cSt]	Formula	Reynolds
Minimum	100	90	$R = \frac{v x D}{v x D}$	980
Maximum	1.000	180	$r_e = \frac{\mu}{\mu}$	19.600


Laminar

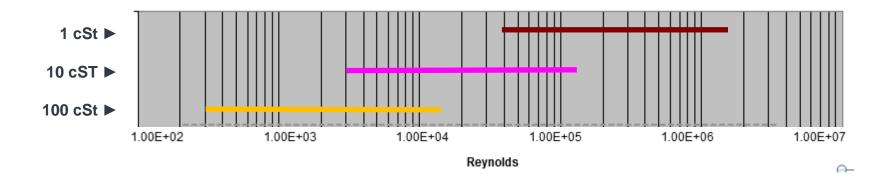
Turbulent

Re > 8.000

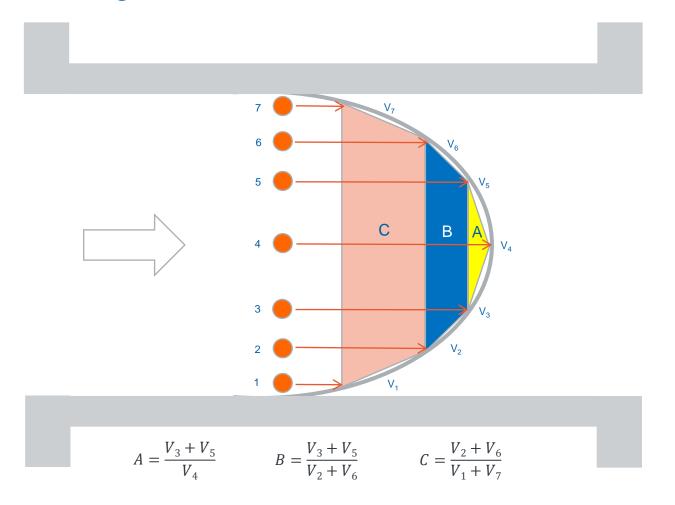


- 1. Principle of operation
- 2. Fluid dynamics influencing the performance
- 3. Elimination of those influences
- 4. Practical calibrations
- 5. Long term stability ultrasonic flow meters.

ALTOSONIC Agenda



Calibration on ball prover


Reynolds calibration

Example 8"	Flow [m3/h]	Viscosity [cSt]	Formula	Reynolds
Minimum	100	90	$R = \frac{v x D}{v x D}$	980
Maximum	1.000	180	$R_e - \mu$	19.600

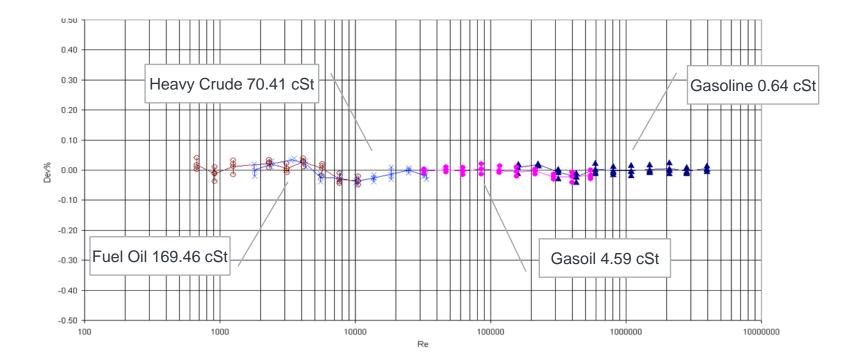
▶ achieve more

Profile recognition

▶ achieve more

Profile / correction table

	Liquid	Α	В	С	Correction Factor
1		1.89000	1.20170	1.40265	1.0085
2		1.88154	1.23608	1.42368	1.0103
3		1.87623	1.25442	1.43472	1.0117
4	4 . 01	1.86880	1.26340	1.44298	1.0113
5	1 cSt	1.86963	1.26954	1.45138	1.0099
6		1.87738	1.27446	1.46956	1.0084
7		1.88163	1.28102	1.47368	1.0071
8		1.88679	1.29230	1.48328	1.0049
9		1.88880	1.29350	1.49327	1.0047
10		1.89120	1.29430	1.50312	1.0045
11		1.88480	1.29900	1.51523	1.0034
12	10 cSt	1.88462	1.29987	1.52378.	1.0032
13	10 051	1.87780	1.30404	1.53370	1.0016
14		1.87500	1.30600	1.54845	1.0014
15		1.87310	1.30750	1.56321	1.0012
16		1.87310	1.31580	1.57298	1.0000
17		1.88480	1.29900	1.51523	1.0039
18		1.88462	1.29987	1.52378.	1.0032
19		1.87780	1.30404	1.53370	1.0016
20	400 - 04	1.87500	1.30600	1.54845	1.0019
21	100 cSt	1.87310	1.30750	1.56321	1.0012
22		1.87315	1.31580	1.57298	1.0008
23		1.87901	1.30650	1.56980	1.0012
24		1.87310	1.31700	1.58023	1.0003



A = 1.89120 B = 1.29430 C = 1.50312

30 x per second !

KROHNE

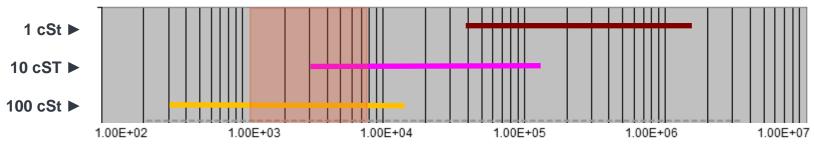
Reynolds correction Final result on multiple products

- 1. Principle of operation
- 2. Fluid dynamics influencing the performance
- 3. Elimination of those influences
- 4. Practical calibrations
- 5. Long term stability ultrasonic flow meters.

ALTOSONIC Agenda

Calibration of ultrasonic flow meters

Correction of the meter reading is based on profile recognition and therefor only depending on Reynolds.


Calibrating the flowmeter across the applicable Reynolds range garantees a good performance on different fluids in the field.

Flow rate versus viscosity and Reynolds

	18 m3/h	37 m3/h	75 m3/h	150 m3/h	300 m3/h	600 m3/h
5 cSt	8490	17400	35400	70700	141000	283000
10 cSt	4240	8720	17700	35400	70700	141000
20 cSt	2120	4360	8840	17700	35400	70700
40 cSt	1060	2180	4420	8840	17700	35400
80 cSt	531	1090	2210	4420	8840	11700
160 cSt	265	545	1110	2210	4420	8840
320 cSt	133	273	553	1110	2210	4420

Calibration with other product then used in the field.

Application 6"							
Example 6"	Flow [m3/h]	Viscosity [cSt]	Formula	Reynolds			
Minimum	75	160	$\mathbf{p} = v x D$	1110			
Maximum	600	160	$R_e - \mu$	8840			
Calibration 6"							
	Flow [m3/h]	Viscosity [cSt]	Formula	Reynolds			
Minimum	45	100	$\mathbf{P} = \frac{v x D}{v x D}$	907			
Maximum	400	100	$R_e = \frac{\mu}{\mu}$	9070			

Reynolds

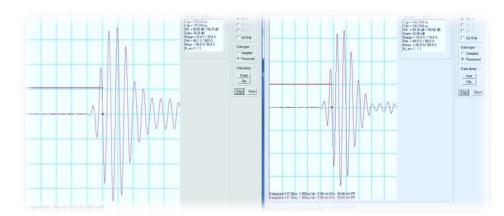
- 1. Principle of operation
- 2. Fluid dynamics influencing the performance
- 3. Elimination of those influences
- 4. Practical calibrations

5. Long term stability ultrasonic flow meters.

ALTOSONIC Agenda

Long term stability of ultrasonic flow meters

Performance of a 16 inch flow meter over 4 years


History of the meter

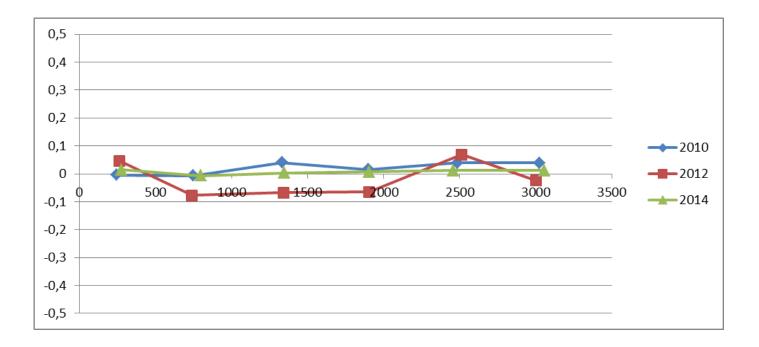
- Initial calibration in 2010
- First re-calibration in 2012
- Second re-calibration in 2014

Check points:

- Ultrasonic signal
- Zero-points
- Overall performance

Long term stability of ultrasonic flow meters

Signal check under static conditions


KROHNE

▶ achieve more

Long term stability of ultrasonic flow meters 16 inch ALTOSONIC V

Calibration performed at SPSE

Thank you for your attention