### CMC

New NFOGM tool for ultrasonic liquid oil metering station uncertainty analysis



Kjell-Eivind Frøysa and Gaute Ø. Lied 19.03.2015

THIS

# GALLONS

PRICE INCLUDING TAX



ACCURATE DELIVERY FROM 5GPM TO FULL FLOW AT ANY PRESSURE





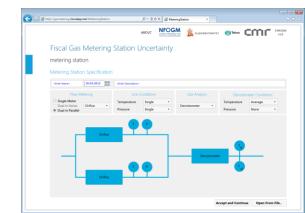
### NPD measurement regulations

Extract of Section 8 – Allowable measurement uncertainty:

| Measurement system                            | Uncertainty limit at 95 percent (%) confidence level  (expanded uncertainty with coverage factor k=2) |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Oil metering for sale and allocation purposes | 0,30 % of standard volume                                                                             |
| Gas metering for sale and allocation purposes | 1,0 % of mass                                                                                         |
| Fuel gas metering                             | 1,5 % of standard volume                                                                              |
| Flare gas metering                            | 5,0 % of standard volume                                                                              |
| Sales measurement of LNG                      | 0,50 % of measured energy contents per ship load                                                      |

It shall be possible to document the total uncertainty of the measurement system. An uncertainty analysis shall be prepared for the measurement system within a 95 percent confidence level. In the present regulations a confidence interval equal to  $\pm$  2  $\sigma$ , i.e. coverage factor k=2, is used. This gives a confidence level slightly higher than 95 percent.




# Handbooks for uncertainty calculations

Uncertainty evaluation of fiscal oil and gas metering stations:

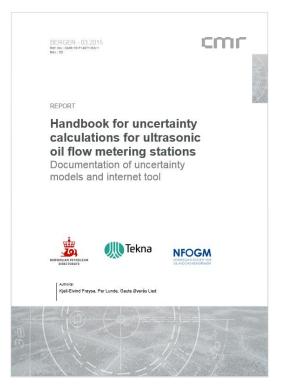
- Orifice gas metering stations (1999 & 2003)
- Turbine oil metering stations (1999 & 2003)
- Ultrasonic gas metering stations (2001)
  - Excel-based uncertainty programs

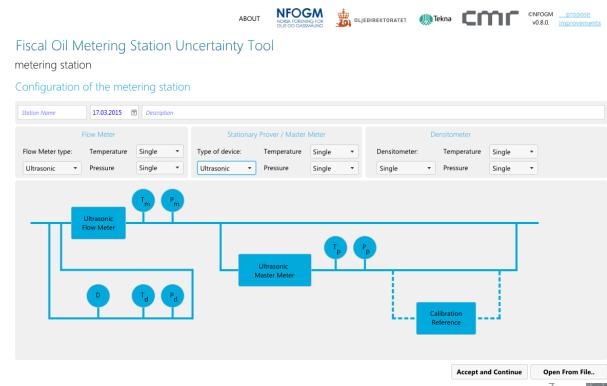
- Gas flow metering stations (2012-14)
  - Silverlight-based uncertainty program





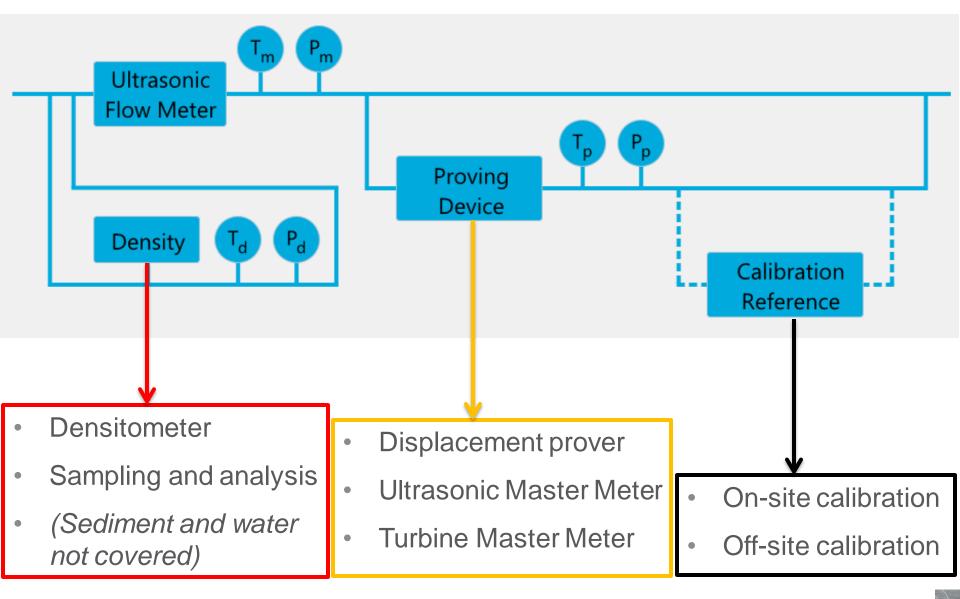
# The current project


- Development of uncertainty model and user friendly tool for calculation of uncertainty of ultrasonic oil metering stations.
- (Similar to the project on gas metering stations carried out earlier.)


- Project carried out by CMR under a contract with NFOGM.
- Supported by NFOGM, NPD and Tekna.

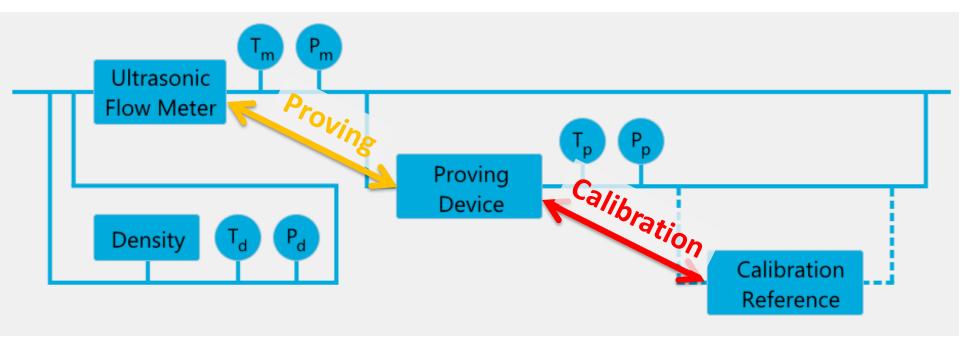


# Output of project


- Handbook with documentation of the uncertainty model and the uncertainty program.
- Interactive, web-based tool for uncertainty analysis of ultrasonic oil metering station. (Microsoft Silverlight Technology.)





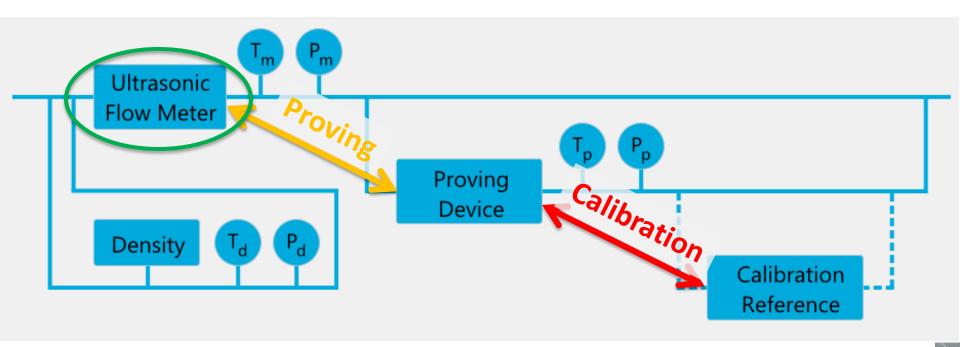

# Lay-out of the metering station

cmr

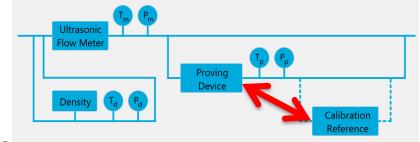




### Important concepts




- Calibration: The procedure used to determine the volume of a prover.
- Proving: The procedure used to determine a meter factor


Ref. API MPMS Chapter 4.1 Proving Systems – Introduction

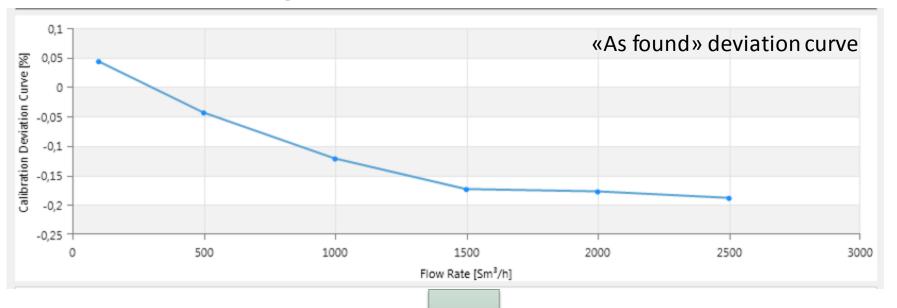


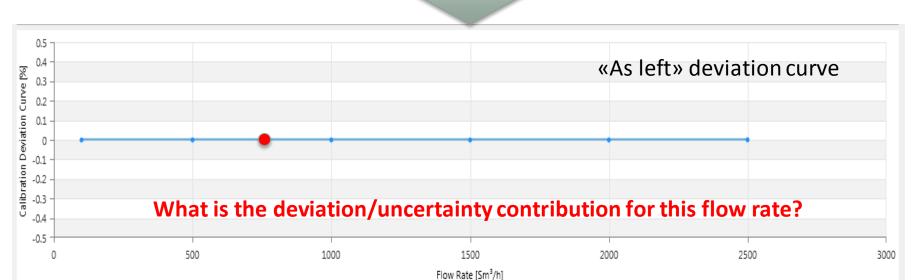
- Uncertainties related to calibration
- Uncertainty related to proving
- Uncertainty related to duty operation
- Uncertainty in volume correction factors



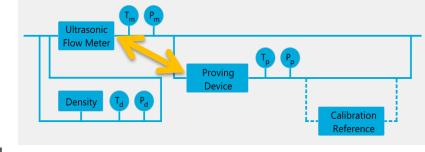
# Uncertainties related to calibration




- Calibration reference uncertainty
  - Small volume prover, or
  - Flow laboratory


### Repeatability

- NPD uncertainty requirement of 0.027 % for flow meter calibrations
  - number of runs per flow rate
  - maximum deviation


| Run<br>number | Flow rate     | Meter factor |
|---------------|---------------|--------------|
| 1             | 2112.22 Sm³/h | 1.0002       |
| 2             | 2113.41 Sm³/h | 1.0005       |
| 3             | 2111.73 Sm³/h | 1.0004       |
| 4             | 2112.67 Sm³/h | 1.0007       |
| 5             | 2112.01 Sm³/h | 1.0005       |

cmr





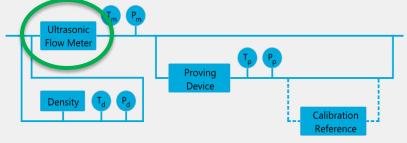
Linearisation



### Uncertainties related to proving

### Linearity

Found from «as-found» deviation curve at calibration


### Repeatability

- Number of runs
- Maximum deviation

### Flow profile and fluid effects on master meter

- Larger for off-site calibration than on-site calibration
- Depends on type-testing of the meter type in question





### Uncertainties related to metering

- Linearity
  - Due to variations in flow rate from proving
- Repeatability
- Flow profile and fluid effects on flow meter
  - Depends on
    - how often the meter is proved
    - process variations (flow rate, pressure, temperature, oil density and viscosity,...)



# ...a brief look through parts of the uncertainty program...

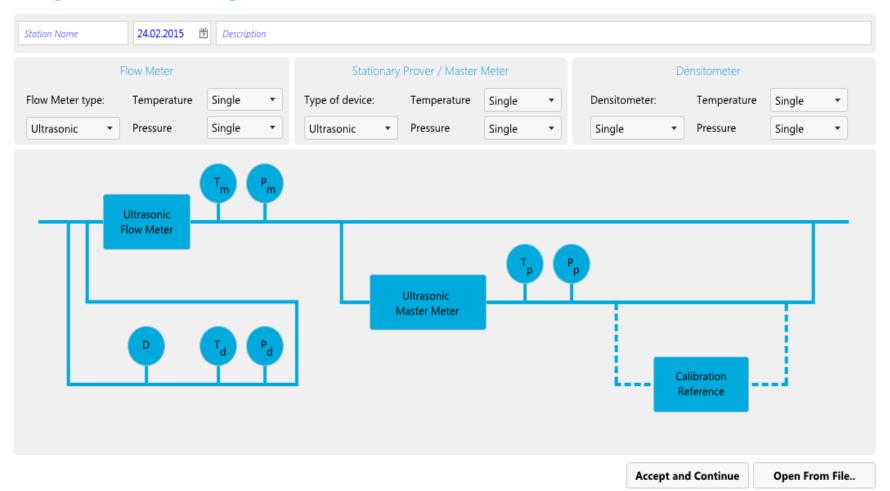











©NFOGM v0.7.5.

propose improvements

### Fiscal Oil Metering Station Uncertainty Tool

metering station

### Configuration of the metering station







OIL









v0.7.5. improvements

### Fiscal Oil Metering Station Uncertainty Tool

metering station oil equipment calibration proving metering results charts plots report

#### Oil Properties

OIL

Input regarding oil product type and operating conditions like base pressure and temperature.

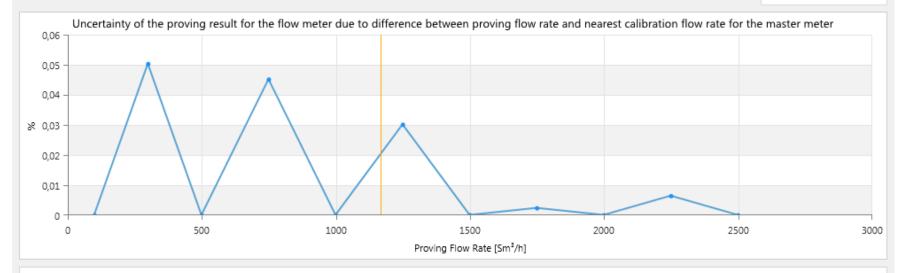
| Product Type C                                                                                                    | onditions                                       |              |                 |        |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------|-----------------|--------|--|--|--|
|                                                                                                                   |                                                 |              |                 |        |  |  |  |
| Specify density at reference                                                                                      | e conditions                                    |              |                 |        |  |  |  |
| Oil density at reference co                                                                                       | nditions                                        | ρ。           | 800             | kg/m³  |  |  |  |
| Specify Oil Product Type (A                                                                                       | API standards or u                              | ser defined) |                 |        |  |  |  |
| Crude Oil                                                                                                         | Crude Oil  Fuel Oil  Jet Group  Gasoline  Other |              |                 |        |  |  |  |
| API Standard Constants fo                                                                                         | r selected oil prod                             | uct type     |                 |        |  |  |  |
| API Constant                                                                                                      |                                                 | K0           | 613.97226       |        |  |  |  |
| API Constant                                                                                                      |                                                 | K1           | 0               |        |  |  |  |
| API Constant                                                                                                      |                                                 | А            | -1.6208         |        |  |  |  |
| API Constant                                                                                                      |                                                 | В            | 0.00021592      |        |  |  |  |
| API Constant                                                                                                      |                                                 | С            | 0.87096         |        |  |  |  |
| API Constant                                                                                                      |                                                 | D            | 0.0042092       |        |  |  |  |
| Specification of model uncertainties for Correction Temperature Liquid (Ctl) and Correction Pressure Liquid (Cpl) |                                                 |              |                 |        |  |  |  |
| Ctl Model Unc. :                                                                                                  | API                                             | User Defined | l [%, 95% conf. | ] 0.05 |  |  |  |
| Cpl Model Unc. :                                                                                                  | API                                             | User Defined | l [%, 95% conf. | 0.096  |  |  |  |



#### Calibration of ultrasonic master meter

Input regarding calibration conditions and uncertainty in the calibration procedure.




| Add Flow                                                 | Rate Point    | Remove Last Point        |                     |                                    |                                      |                       |     |
|----------------------------------------------------------|---------------|--------------------------|---------------------|------------------------------------|--------------------------------------|-----------------------|-----|
| <b>#</b>                                                 | Rate<br>Sm³/h | Calib. Ref.<br>%, 95% Co | Uncertainty<br>onf. | Deviation Curve<br>(Uncorrected) % | Master Meter Repeat.<br>%, 95% Conf. | Total<br>%, 95% Conf. |     |
| L                                                        | 100           | 0.031                    |                     | 0.043                              | 0.027                                | 0.0411                |     |
| 2                                                        | 500           | 0.031                    |                     | -0.044                             | 0.027                                | 0.0411                |     |
| 3                                                        | 1000          | 0.031                    |                     | -0.122                             | 0.027                                | 0.0411                |     |
| 1                                                        | 1500          | 0.031                    |                     | -0.174                             | 0.027                                | 0.0411                |     |
| i                                                        | 2000          | 0.031                    |                     | -0.178                             | 0.027                                | 0.0411                |     |
| ;                                                        | 2500          | 0.031                    |                     | -0.189                             | 0.027                                | 0.0411                |     |
| 0,1<br>0,05<br>0<br>0<br>-0,05<br>-0,15<br>-0,2<br>-0,25 |               | 500                      | 1000                | 1500<br>Flow Rate [Sm³/h]          | 2000                                 | 2500                  | 300 |

#### Uncertainty in proving of flow meter against master meter

Proving Flow Rate: 1166 \$ Sm³/h

| Uncertainty Element                                                                      | Uncertainty | Unit ( | Confidence   | Std. Uncert. u <sub>i</sub> | Sens. Coeff. s <sub>i</sub> | Variance ( s <sub>i</sub> · u <sub>i</sub> )² |
|------------------------------------------------------------------------------------------|-------------|--------|--------------|-----------------------------|-----------------------------|-----------------------------------------------|
| Flow meter repeatability at proving                                                      | 0.027       | %      | 95% (norm) ▼ | 0,0135 %                    | 1,000 E+0                   | 1,823 E-4 (%) <sup>2</sup>                    |
| Master meter repeatability at proving                                                    | 0.027       | %      | 95% (norm) ▼ | 0,0135 %                    | 1,000 E+0                   | 1,823 E-4 (%) <sup>2</sup>                    |
| Flow profile and fluid effects on master meter                                           | 0.03        | %      | 95% (norm) ▼ | 0,015 %                     | 1,000 E+0                   | 2,250 E-4 (%) <sup>2</sup>                    |
| Uncertainty contribution from difference in proving flow rate and calibration flow rates | 0.02        | %      | 95% (norm) ▼ | 0,01 %                      | 1,000 E+0                   | 9,963 E-5 (%)²                                |

Sum of variances,  $\Sigma$  (  $s_i \cdot u_i$  )  $^2$  0,0007 (%)  $^2$  Relative Combined Standard Uncertainty 0,026 % Relative Expanded Uncertainty (95% Confidence level, k=2) 0,053 %

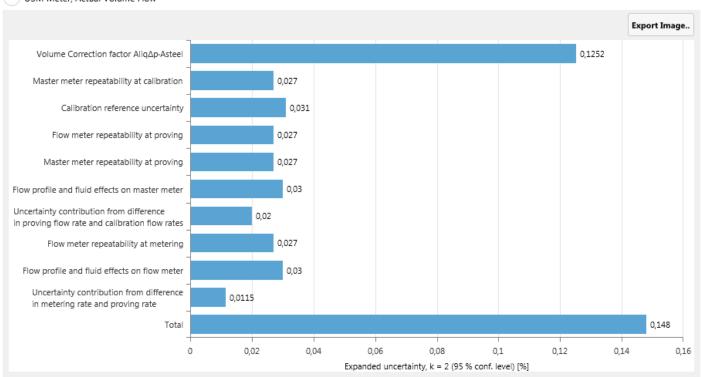


Documentation










### Fiscal Oil Metering Station Uncertainty Tool

metering station oil equipment calibration proving metering results charts plots report

#### **Uncertainty Budget Charts**

USM Meter, Actual Volume Flow



- USM Meter, Standard Volume Flow
- USM Meter, Mass Flow
- Proving, Proving Uncertainty
- Metering, Metering Uncertainty
- Oil, Reference Density
- Volume Correction factor Aliq∆p-Asteel
- Volume Correction factor Aliqm∆p-Asteel
- Volume Correction factor AliqΔmΔp Asteel

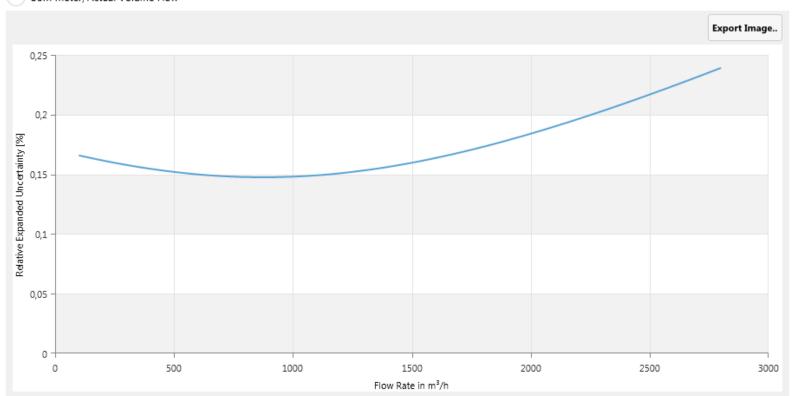











v0.7.9. improvements

### Fiscal Oil Metering Station Uncertainty Tool

metering station oil equipment calibration proving metering results charts plots report

### **Uncertainty Range Plots**







USM Meter, Mass Flow



# Summary

- Interactive uncertainty program for ultrasonic oil metering stations.
- User-friendly input
- Easy to get an overall analysis
- Uncertainty analysis according to ISO GUM

...finished within few weeks.

