

NORWEGIAN SOCIETY FOR OIL AND GAS MEASUREMENT

LESSONS LEARNED IN THE PREPARATION OF ALLOCATION AGREEMENTS

Phil Stockton

Accord Energy Solutions

This is what I'm going to talk about

Fabric of the Universe

Sche

ACME Allocation Rules Schedule 1 – Allo cation Rules

June 2016 Page 21 of 32

4. ALLOCATION

The Allocation Rules for each Product are detailed below, and flowcharts summarising the methods are shown in Figure 4-1 to Figure 4-5 in Section 4.8:

- Produced Water Allocation, Figure 4-1.
- Oil Allocation, Figure 4-2.
- Fuel Gas Allocation, Figure 4-3.
- Export Gas Allocation, Figure 4-4.
- Flare Gas Allocation, Figure 4-5.

4.1 Allocation of Produced Water

Produced Water is allocated to each Field in proportion to the total Water Potential calculated for that Field. The potential water production for each well $(\underline{PW}_{\infty})$ is calculated daily.

4.1.1 Calculate Inlet Water Ratio

 $MPWO = \sum MPW_s$

Field Potential Water mass flowrate (MFPWr) is calculated from the sum of the Water Potentials for each well in the Field, adjusted to take account of the well production uptime, HRw, which is the sum of production uptime to all separators, including test separator. For each Field,

$$MFPW_F = \sum_{w \in F} \left(PW_w * \frac{HR_w}{24} \right)$$
 Equation 4-1

The Field inlet water ratio is thus calculated,

 $IWR_{F} = \frac{MFPW_{F}}{\sum_{r} MFPW_{r}}$ Equation 4-2

4.1.2 Allocate Produced Water Overboard The Produced Water Overboard (MPWO) is calculated from the sum of the measured produced water streams for all separators:

Equation 4-3

This is then allocated in proportion to the inlet water ratio. For each Field,

Release 1 [Page 21 of 32]

st		
	Rule 1 Rule 2	efinitions
	Rule 3 Rule 4	nocation of
	Rule <u>5</u> Rule 6	Comm. Discontinuation Estimates Nominations Ad perating
	Rule 7 Rule <u>8</u>	Priorities Allocation Statements and Ob <u>Maintenance Repair Modification</u> ment
	Rule 9 Rule 10	Quality Curtailment
	Rule 11 Rule 12 Rule 13	Amendments to Rules The Expert Audit Rights
	Rule 14	Admission of a New Entrant
	Schedule <u>1</u>	Schedules Details of Entrants
	Schedule 2	ACME Allocation Procedure
	Schedule 3	ACME Process Modelling
	Schedule 4	Measurement and Analysis

ACME Allocation Rules Schedule 1 – Allo cation Rules

June 2016 Page 21 of 32

4. ALLOCATION

The Allocation Rules for each Product are detailed below, and flowcharts summarising the methods are shown in Figure 4-1 to Figure 4-5 in Section 4.8:

- Produced Water Allocation, Figure 4-1.
- Oil Allocation, Figure 4-2.
- Fuel Gas Allocation, Figure 4-3.
- Export Gas Allocation, Figure 4-4.
- Flare Gas Allocation, Figure 4-5.

4.1 Allocation of Produced Water

Produced Water is allocated to each Field in proportion to the total Water Potential calculated for that Field. The potential water production for each well (RWw) is calculated daily.

4.1.1 Calculate Inlet Water Ratio

Field Potential Water mass flowrate (MFPW_F) is calculated from the sum of the Water Potentials for each well in the Field, adjusted to take account of the well production uptime, HR_{W} , which is the sum of production uptime to all separators, including test separator. For each Field,

$$MFPW_F = \sum_{w \in F} \left(PW_w * \frac{HR_w}{24} \right)$$
 Equation 4-1

The Field inlet water ratio is thus calculated,

$$WR_F = \frac{MFPW_F}{\sum MFPW_F}$$
 Equation 4-2

4.1.2 Allocate Produced Water Overboard

Release 1

The Produced Water Overboard (MPWO) is calculated from the sum of the measured produced water streams for all separators:

$MPWO = \sum MPW_s$	Equation 4-3
2	

This is then allocated in proportion to the inlet water ratio. For each Field,

ACME Allocation Rules Schedule 1 – Allo cation Rules

June 2016 Page 21 of 32

4. ALLOCATION

The Allocation Rules for each Product are detailed below, and flowcharts summarising the methods are shown in Figure 4-1 to Figure 4-5 in Section 4.8:

- Produced Water Allocation, Figure 4-1.
- Oil Allocation, Figure 4-2.
- Fuel Gas Allocation, Figure 4-3.
- Export Gas Allocation, Figure 4-4.
- Flare Gas Allocation, Figure 4-5.

4.1 Allocation of Produced Water

Produced Water is allocated to each Field in proportion to the total Water Potential calculated for that Field. The potential water production for each well (PWw) is calculated daily.

4.1.1 Calculate Inlet Water Ratio

Field Potential Water mass flowrate (MFPWr) is calculated from the sum of the Water Potentials for each well in the Field, adjusted to take account of the well production uptime, HR_W , which is the sum of production uptime to all separators, including test separator. For each Field,

$$MFPW_F = \sum_{w \in F} \left(PW_w * \frac{HR_w}{24} \right)$$
 Equation 4-1

The Field inlet water ratio is thus calculated

$$IWR_{F} = \frac{MFPW_{F}}{\sum MFPW_{F}}$$
 Equation 4-2

4.1.2 Allocate Produced Water Overboard

Release 1

The Produced Water Overboard (MPWO) is calculated from the sum of the measured produced water streams for all separators:

$$MPWO = \sum_{s} MPW_{s}$$
 Equation 4-3

This is then allocated in proportion to the inlet water ratio. For each Field,

ACME Allocation Rules Schedule 1 – Allo cation Rules

June 2016 Page 21 of 32

4. ALLOCATION

The Allocation Rules for each Product are detailed below, and flowcharts summarising the methods are shown in Figure 4-1 to Figure 4-5 in Section 4.8:

- Produced Water Allocation, Figure 4-1.
- Oil Allocation, Figure 4-2.
- Fuel Gas Allocation, Figure 4-3.
- Export Gas Allocation, Figure 4-4.
- Flare Gas Allocation, Figure 4-5.

4.1 Allocation of Produced Water

Produced Water is allocated to each Field in proportion to the total Water Potential calculated for that Field. The potential water production for each well (PWw) is calculated daily.

4.1.1 Calculate Inlet Water Ratio

Field Potential Water mass flowrate (MFPWr) is calculated from the sum of the Water Potentials for each well in the Field, adjusted to take account of the well production uptime, HR_W , which is the sum of production uptime to all separators, including test separator. For each Field,

$$MFPW_F = \sum_{w \in F} \left(PW_w * \frac{HR_w}{24} \right)$$
 Equation 4-1

The Field inlet water ratio is thus calculated

$$IWR_{F} = \frac{MFPW_{F}}{\sum MFPW_{F}}$$
 Equation 4-2

4.1.2 Allocate Produced Water Overboard

Release

The Produced Water Overboard (MPWO) is calculated from the sum of the measured produced water streams for all separators:

$$MPWO = \sum_{s} MPW_{s}$$
 Equation 4-3

This is then allocated in proportion to the inlet water ratio. For each Field,

ACME ALLOCATION RULES

	Rule 1	Definitions		
	Rule 2	Entrant Representatives		
	Rule 3	Description of the System		
	Rule 4	Commingling Measurement and Allocation of		
		Natural Gas		
	Rule <u>5</u>	Commencement Suspension and Discontinuation		
	Rule 6	Estimates Advice and Operating		
		P		
	Rule 7	ons		
	Rule 8	Replacement		
	Rule 9	· · · 1		
	Rule 10	iirtoilment		
	Rule 12			
	Rule 13			
	Rule 14			
		Schedules		
	Schedule 1	Details of Entrants		
	Schedule 2	ACME Allocation Procedure		
	Schedule 3	ACME Process Modelling		
	Schedule 4	Measurement and Analysis		

ACME Allocation Rules Schedule 1 – Allo cation Rules

June 2016 Page 21 of 32

4. ALLOCATION

The Allocation Rules for each Product are detailed below, and flowcharts summarising the methods are shown in Figure 4-1 to Figure 4-5 in Section 4.8:

- Produced Water Allocation, Figure 4-1.
- Oil Allocation, Figure 4-2.
- Fuel Gas Allocation, Figure 4-3.
- Export Gas Allocation, Figure 4-4.
- Flare Gas Allocation, Figure 4-5.

4.1 Allocation of Produced Water

Produced Water is allocated to each Field in proportion to the total Water Potential calculated for that Field. The potential water production for each well (RWw) is calculated daily.

4.1.1 Calculate Inlet Water Ratio

Field Potential Water mass flowrate (MFPW_F) is calculated from the sum of the Water Potentials for each well in the Field, adjusted to take account of the well production uptime, HR_W , which is the sum of production uptime to all separators, including test separator. For each Field,

$$MFPW_F = \sum_{w \in F} \left(PW_w * \frac{HR_w}{24} \right)$$
 Equation 4-1

The Field inlet water ratio is thus calculated,

$$IWR_{F} = \frac{MFPW_{F}}{\sum MFPW_{F}}$$
 Equation 4-7

4.1.2 Allocate Produced Water Overboard

Release 1

The Produced Water Overboard (MPWO) is calculated from the sum of the measured produced water streams for all separators:

$MPWO = \sum MPW_s$	Equation 4-3
S	

This is then allocated in proportion to the inlet water ratio. For each Field,

ACME ALLOCATION RU Definitions Rule 1 Rule 2 Entrant Representatives Rule 3 Description of the System Commingling Measurement and Rule 4 Natural Gas Rule 5 Commencement Suspension and Discontinuation Estimates Nominations Advice and Operating Rule 6 Priorities Allocation Statements and Objections Rule 7 Maintenance Repair Modification or Replacement Rule 8 Rule 9 Quality Rule 10 Curtailment Amendments to Rules Rule 11 Rule 12 The Expert Rule 13 Audit Rights Rule 14 Admi Schedule Process Modelling Schedul Schedu Schedul

NFOGM 2016 Allocation

ACME Allocation Rules Schedule 1 – Allo cation Rules

4. ALLOCATION

The Allocation Rules for each Product are detailed 1 are shown in Figure 4-1 to Figure 4-5 in Section 4

- Produced Water Allocation, Figure 4-1.
- Oil Allocation, Figure 4-2.
- Fuel Gas Allocation, Figure 4-3.
- Export Gas Allocation, Figure 4-4.
- Flare Gas Allocation, Figure 4-5.

4.1 Allocation of Produced Water

Produced Water is allocated to each Field in proportion to the total Water Potential calculated for that Field. The potential water production for each well (PWw) is calculated daily.

4.1.1 Calculate Inlet Water Ratio

Field Potential Water mass flowrate (MFPWr) is calculated from the sum of the Water Potentials for each well in the Field, adjusted to take account of the well production uptime, HR_W , which is the sum of production uptime to all separators, including test separator. For each Field,

$$MFPW_F = \sum_{w \in F} \left(PW_w * \frac{HR_w}{24} \right)$$
 Equation 4-1

The Field inlet water ratio is thus calculated

$$WR_F = \frac{MFPW_F}{\sum MFPW_F}$$
 Equation 4-2

4.1.2 Allocate Produced Water Overboard

Release

The Produced Water Overboard (MPWO) is calculated from the sum of the measured produced water streams for all separators:

$MPWO = \sum MPW_s$	Equation 4-3
S	

This is then allocated in proportion to the inlet water ratio. For each Field,

Page 21 of 32

Keep it simple?

Everything should be made as simple as possible, but not simpler

"It ain't easy"

Measurements + Concepts → Equations

A=B-C

System

Entrants

New Feature - Difficult

Re-Opening Agreements

JDORA'S BO

Lega

Re-Opening Agreements

Commercial

Negotiations

June 2016 Page_24 of 32

Page 24 of 32

Keep it simple?

ACME Allocation Rules Schedule 1 – Allo cation Rules		

$$PSX_{FC,C} = \frac{PSMFG_{C}}{\sum_{C} PSMFG_{C}}$$
 Equation 4-15

$$HFG^{BO} = MFG * \sum_{c} (PSX_{FC,c} * CV_{c})$$
 Equation 4-16

This is initially allocated in proportion to the each Field's allocated mass of Export Oil. For each Field,

$$HFGI_F = HFG^{BO} * \frac{MEO_F}{\sum MEO_F}$$
 Equation 4-17

4.4.2 Check Sufficiency of Processed Gas

The Fuel Gas Energy allocated to any Field must be limited to the available Processed Gas Energy for that Field, taking account of any balance in the Fuel Gas Energy Bank.

The Fuel Gas energy Requirement (HFGR'F) is calculated for each Field,

$$HFGR'_{F} = HFGI'_{F} - HFGB_{F,Ones}$$
 Equation 4-18

The Processed Gas Deficiency (HPGDF) is calculated for each Field,

$$\begin{array}{l} If \quad HPG_{F}^{BO} \geq HFGR_{F} \\ Then \quad HPGD_{F} = 0 \\ Else \quad HPGD_{F} = HFGR_{F}^{BO}, \quad HFGR_{F} = HPG_{F}^{BO} \end{array} \end{array}$$

$$\begin{array}{l} Equation \ 4-19 \\ Equation \ 4-19 \\ Else \quad HPGD_{F} = HFGR_{F}^{BO} \end{array}$$

The total deficiency (which is zero for normal operation) is then redistributed among the nondeficient Fields in proportion to their Processed Gas Energy less required Fuel Gas Energy, to obtain the allocated theoretical Fuel Gas Energy (HFG'r).

The Closing Balance of the Fuel Gas Energy Bank is then calculated. For each Field,

$$HFGB_{F,Close} = HFGB_{F,Close} + HFG'_{F} - HFGI'_{F}$$
 Equation 4-21

4.4.3 Allocate Mass of Fuel Gas

Release 1

The measured mass of Fuel Gas (MFG) is allocated in proportion to the allocated theoretical Fuel Gas energy (HFG'r). For each Field,

$$MFG_F = MFG^* \frac{HFG_F}{\sum_F HFG_F}$$
 Equation 4-22

The Unreasonable Effectiveness of Mathematics in the Natural Sciences

"The miracle of the appropriateness of the language of mathematics to the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve"

Prescriptive

Prescriptive

Too Prescriptive!

- Separate schedule for process model
- Describe properties
 - Inputs
 - Outputs
 - Methods

e.s.L

Flexibility

NFOGM 2016 Allocation

Specific vs General

$$A_{Alpha} = M_{Oil} * \left(\frac{F_{Alpha}}{F_{Alpha} + F_{Bravo}}\right)$$

$$A_{Bravo} = M_{Oil} * \left(\frac{F_{Bravo}}{F_{Alpha} + F_{Bravo}}\right)$$

$$A_i = M_{Oil} * \left(\frac{F_i}{\sum_i F_i}\right) \qquad \begin{array}{c} \text{I-Entrank}\\ \text{Alpha}\\ \text{Bravo} \end{array}$$

i-Fntrant

A Universal Language

Matematikk Mathematics Matemáticas Mathématiques Matematik Math

Mathematical format

Not a mathematical proof

Mathematical algorithm

 $X_{new} = X_{old} + Y$

Not a software design document

Y = f(X, Z)

Notation

DEFINED TERMS

Day	24 hour period of Allocation
Field	Group of Wells with common Party equity interest
Party	Company or Group of Companies with an interest in a Field
Processed Gas	Sum of Fuel Gas and Export Gas
Standard Volume	Volume of stream at 15°C, 1.013 bara.
Well	Single hydrocarbon producing well

Mathematical Observations

• Division by zero

$$-A_{\alpha} = MO \frac{F_{\alpha}}{\sum_{j} F_{j}}$$

- What happens when $\sum_{j} F_{j}=0$?
- General statement at start

$$F_{\alpha} = \sum_{i \in \mathcal{I}} W_i$$

 $- \in$ - Is an element of

A Universal Language?

Primacy of the equations

$$PSX_{FG,C} = \frac{PSMFG_{C}}{\sum_{C} PSMFG_{C}}$$

$$HFG^{ISO} = MFG * \sum_{C} \left(PSX_{FG,C} * CV_{C} \right)$$

$$HFGI'_{F} = HFG^{ISO} * \frac{MEO_{F}}{\sum_{F} MEO_{F}}$$

$$HFGR'_{F} = HFGI'_{F} - HFGB_{F,Open}$$

$$HFGB_{F,Close} = HFGB_{F,Open} + HFG'_{F} - HFGI'_{1}$$

$$MFG_{F} = MFG * \frac{HFG'_{F}}{\sum_{F} HFG'_{F}}$$

Communication aided by text

$$PSX_{FG,C} = \frac{PSMFG_{C}}{\sum_{C} PSMFG_{C}}$$
Equation 1
$$HFG^{ISO} = MFG * \sum_{C} (PSX_{FG,C} * CV_{C})$$
Equation 2

Frice fuel $g_{MEO_F}^{MEO_F}$ energy (HFG^{ISO}) is initially allocated in proportion to the each Field's allocated mass of **Proportion** for the each Field's allocated mass of **Export Oil.** For each Field: **HFGB**_{F,Close} = HFGB_{F,Open} + HFG'_F - HFGI'_F

$$MFG_F = MFG * \frac{HFG'_F}{\sum_F HFG'_F}$$

Equation 3

Equation 4

Equation 5

Equation 6

Mathematically correct?

Testing the Mathematical Algorithm

- Use of simplified models
 - Spreadsheets
 - Reduced components, entrants
- Test logic
 - Functionality
 - Robustness
- Test with (semi
- Monte Carlo

	Alpha	Beta	Gamma	Total	ACME Plant
Export					
C1	70%	80%	60%		
C2	20%	15%	25%		
C3	10%	5%	15%		
Mass	100	200	250		
C1	70	160	150	380	
C2	20	30	62.5	112.5	
C3	10	10	37.5	57.5	
Plant Disposal					
C1					65%
C2					19%
C3					16%
Mass					620
					1 /

Agreement Writing Process

Concepts Principles Write Test Issue

Is the Universe a Mathematical Structure?

Fundamental Particles' Properties

Electron

Mass: 0.511 MeVCharge: -1Spin: $\frac{1}{2}$ Isospin: $-\frac{1}{2}$ Baryon No. : 0Lepton No. : 1

Fundamental Particles' Properties

Proton

Mass: 938.3 MeVCharge: +1Spin: $\frac{1}{2}$ Isospin: $\frac{1}{2}$ Baryon No. : 11Lepton No. : 0

Fundamental Particles' Properties

Photon

Mass	•	0
Charge	•	0
Spin	•	1
Isospin	•	0
Baryon No.	•	0
Lepton No.	•	0

文 ÊŪ 技す

薬と□字印<び技す◎ 開出のシ 品 蟿 最 ま

ž ゴ図ンは U E/ Ť メ密万 国出のシ

美と字印をび鼓す の朝鮮の砂晶 U 世山のからは朝し、宮方国ノは日のし、京都設美で、町板条レスの制まで、町板条レスの制

ġ ٤ 穿 E

D D 会観 下感ザ絵 美イ 文精 字印 U

び抜す、国出のシ品、致量は、コ図ンはロックをに美と、字印=び技す、国出のシ品、致量まし、 「日回シは証 メ密方

対と絵 中の 一日、日本のシ品 数量ま しオ会観美イカ版もレ保の 文精 っ 社明 ED U

な

13

出のシ品 最ま 國具

美の植及 0 力版 日 U 出の 2 品 致

ゴ図ンは証 メ言語 Б

えていましたの 字印町の植 す及国語 出のシ品
致最ま ゴ図ンは I メ密報 $\overline{\boldsymbol{\mathcal{D}}}_{\boldsymbol{b}}^{b}$

榆

及術文写で、影け絵 じが会被美小

0

Ù S

R

U

A

L

Ļ

Ρ

A

Ρ

E R

C

0

M

むよ。保険、 文緒な 不

社明。 をは美さ 学時 ひ

S B

S

ED

7¥

技

田

σ

55

実験が援事

Щ

S L O

D

H.

1

H

5

Б

Ф

文精

なマ

美と

印

技す

国出

Φ

Score 4%

Red Dwarf

.

Questions? Comments? Contributions?

