

Using Uncertainty Analysis to Optimise Allocation Measurement System Performance

Alick MacGillivray

NEL

2014-06-06

Contents

- The impact of uncertainty on flow measurement
- Hydrocarbon accounting
- Proportional allocation
- Uncertainty based allocation
- The problem
 - Flow system
 - Proportional allocation
 - Uncertainty based allocation
 - Venturi measurement
 - Results
 - Financial impact

The Impact of Uncertainty

88 Million barrels of Oil per day

The total cost was approximately \$9.9 Billion

Uncertainty was

Financial exposure

\$25 Million per day

The Cost of Errors

Cost per barrel:

Revenue:

\$1.0M per day

Suppose the meter **under-reads** (error) by

Hydrocarbon Accounting

Determination of the quantity of products belonging to each user when processed together in a commingled system

Why Do We Need Allocation?

- Common for production facilities to process fluids from multiple fields
- Fields have different compositions, ownership and tax regimes
- Not uncommon for a single platform from several distinct formations and have several users.

Why Do We Need Allocation?

Field delivering 500,000 Barrels per day.

Revenue of \$25,000,000 per day

A **bias** of 0.1% in the system would generate \$7,500,000 per annum misallocation.

SO IT'S IMPORTANT!

Proportional Allocation

Adjusted flow is calculated from **flow proportions** Note that allocated flows sum to fiscal flow

Uncertainty Based Allocation

Fraction of the imbalance between the reference quantity and the sum of the production units proportioned to the uncertainty

The Problem

- Three partners sharing a gas pipeline
- Using Uncertainty Based Allocation (UBA) to allocated gas to each partner
- Partner 2 had large flow uncertainty, caused by high densitometer uncertainty (roughly 5.0%)
- Caused in turn by instability in the instrument
- Considered that this may be losing them revenue
- Changed to gas chromatograph with uncertainty of 0.5%
- Compared allocated hydrocarbons
- Calculate savings

Flow System (Gas Flow)

Proportional Allocation

Differential Pressure Principle

- Fluid flows through a restriction
- Accelerates to a higher velocity
- Static pressure decreases
- Δp is proportional to the **square** of the flowrate

Venturi Meter

- Δp measured across the upstream to throat section
- Typical discharge coefficient C of **0.95**
- Here measuring gas flow

Venturi Meter Uncertainty

Quantity	Value	U	K	u	С	u.c	(u.C)²
Discharge Coefficient	0.995	0.0075	2	0.00373	88.5	0.330	1.09E-1
Pipe Diameter	0.700	0.0035	1.72	0.00202	-5.7	-0.012	1.32E-4
Orifice Diameter	0.300	0.0006	1.73	0.00035	352.1	0.122	1.49E-2
Pressure Drop	16,295	16.30	2	8.148	0.0014	0.011	1.30E-4
Static Pressure	101325	506.62	2	253.313	0.0000	0.006	4.10E-5
Expansibility	0.997	0.0015	2	0.00075	88.3	0.0660	4.36E-3
Density	46.75	2.3375	2	1.169	0.543	0.635	4.03E-1
Calculated Flow	88.05	1.459	2	0.7293	1	0.7293	5.32E-1

Uncertainty Based Allocation

Venturi Meter Uncertainty

Quantity	Value	U	K	u	С	u.c	(u.C)²
Discharge Coefficient	0.995	0.0075	2	0.00373	88.5	0.330	1.09E-1
Pipe Diameter	0.700	0.0035	1.72	0.00202	-5.7	-0.012	1.32E-4
Orifice Diameter	0.300	0.0006	1.73	0.00035	352.1	0.122	1.49E-2
Pressure Drop	16,295	16.30	2	8.148	0.0014	0.011	1.30E-4
Static Pressure	101325	506.62	2	253.313	0.0000	0.006	4.10E-5
Expansibility	0.997	0.0015	2	0.00075	88.3	0.0660	4.36E-3
Density	46.75	0.2333	2	0.11662	0.543	0.0640	4.03E-3
Calculated Flow	88.05	0.728	2	0.3641	1	0.3641	1.33E-1

0.8%

Venturi Meter Uncertainty

Part 2: Effect of Reduced Uncertainty

Difference from Measured Value

Conclusions

- Reducing the uncertainty in density increases the allocated flow to partner 2 (using UBA)
- This increases Partner 2 flow from 5,073 kg/min to 5,171 kg/min.
- Increases revenue by **\$27 million** per year.
- Illustrates the effect of uncertainty on a measurement system in an allocation scenario.