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1. Introduction 
 

A core requirement for achieving low uncertainty flow metering is that each step of the quality 
control process has integrity and is rigorously adhered to. Calibration is a critical part of many 
flow meter quality control procedures. The calibration process consists not only of testing the 
flow meter at a reputable flow laboratory across the appropriate flow conditions, but also of how 
that recorded data is subsequently implemented into the flow metering system’s calculation 
routine. This second part of the calibration process, often called ‘linearization’, ‘curve fitting’, or 
‘data fitting’, is a critical part of flow meter quality control. There are multiple ways of 
linearizing a flow meter, and yet, few meter manufacturers, end users, standards boards, or 
regulators have stated comprehensive published rules regarding this process.  
 

Some standards text touches on linearization, e.g. AGA 9 Ed 2 says of ultrasonic meter (USM) 
linearization “… use a polynomial algorithm, piece-wise linear interpolation, or other industry 
accepted method”. But what qualifies a linearization technique as an ‘industry accepted 
method’? Such text is open to interpretation. ISO 17089 USM standard also leaves the choice 
open suggesting a flow-weight mean error, piece-wise linear interpolation, or a polynomial fit. 
ISO 5167 states for low uncertainty, Venturi and cone meters should be calibrated, but the text 
does not give any guidance on the subsequent data fit methodology. There are many choices but 
no published consensus. Although flow meter linearization tends to be thought of as an objective 
exercise, it is in reality rather subjective.  
 

The integrity of a flow meter’s linearization technique is critical to the integrity of the overall 
flow metering process. Lax attention to the technical details of flow meter linearization 
undermines the integrity of the flow meter. It represents a potential hole in flow metering quality 
control. It is arguable that flow meter linearization techniques should ideally be more regulated, 
and discussed in more detail in flow meter standards and contracts. A standard would set out 
benchmarks for linearization techniques to be compared to. However, this may be very difficult 
to practically implement. A pragmatic compromise is a call for far more awareness, disclosure 
and clarity between manufacturer and end user regarding which linearization technique is being 
applied, why, and what the pros and cons of that choice are.   
 

2. Calibration Data, Data Fitting and Computers 
 

Flow meters produce an output signal that is relatable to the flow rate via some theoretical 
relationship. For example, a turbine or ultrasonic meter output signal is theoretically directly 
proportional to flow rate, and a Differential Pressure (DP) meter output signal has a theoretical 
parabolic relationship with flow rate. If these theoretical relationships were the whole story in 
practice there would be no need to calibrate and linearize flow meters.  However, in practice this 
is not the case. In reality there are always various issues, such as meter manufacturing tolerances, 
secondary physical influences, installation effects etc. that are not accounted for by the theory. 
For low uncertainty flow metering these influences have to be removed from the meter output, 
i.e. they are ‘calibrated out’, sometimes referred to as ‘linearizing the flow meter’. 
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Regardless of standard bodies definitions of flow meter ‘calibration’, in colloquial terms it tends 
to mean one of two things. It can mean testing a flow meter against a reputable standard to 
produce a data set of a correction parameter (e.g. a ‘K-factor’, ‘meter factor’ etc.) vs. a 
correlating parameter (e.g. Reynolds number, volume flow rate etc.). Or it can also mean the 
follow on acts of then choosing a mathematical expression to represent that calibration data set, 
i.e. the linearization technique, and then entering that expression into a computer. This computer 
carries out the flow rate calculation using inputted geometries, fluid property values, the meter’s 
primary signal/s, and a combination of the relevant theoretical calculation and the chosen 
linearization technique. That is, the flow rate calculation is comprised of two concurrent parts, 
i.e. the standard theoretical flow rate equation, and the chosen calibration based mathematical 
expression that corrects for the difference between theory and practice. Hence, the chosen 
calibration data based mathematical expression is central to the meter’s flow rate prediction 
output, and therefore that flow rate prediction integrity. A poor choice of calculation routine 
means a poorly performing flow meter, with perhaps a relatively high uncertainty or bias.  
 

A modern generic flow meter system comprises of a meter body (the primary component), 
instrumentation (the secondary component/s), and a computer to gather data and calculate the 
flow rate. There are generally three alternative locations for such a computer. There is the 
‘processor’ (sometimes called the ‘transmitter’ or ‘meter head’) embedded in a flow metering 
system, and is an integral indelible component of a manufacturer’s flow meter package. Then 
there is the generic stand-alone ‘flow computer’ products supplied by reputable suppliers that 
can be installed on many generic flow meters such as Venturi, cone, turbine meters etc. Users 
can procure the meter body and instrumentation separately from this flow computer. Then there 
is the third option for the end user to use the mainframe computer that monitors and controls the 
overall process in which the metering system is a sub-system.  
 

The end user typically programs the curve fit into the mainframe computer or stand-alone flow 
computer product and hence in those cases they have a fully transparent calculation method. 
Such flow computers also tend to have an audit function that produces clear reports. Processors 
that are embedded components of flow meter systems can contain manufacturer inserted 
undisclosed inaccessible linearization code, and are by nature not very transparent. In such a 
scenario the end user is not automatically guaranteed a fully transparent flow calculation routine.  
 

Manufacturers of flow computers can be held accountable to standards (e.g. API 21.1 for gas 
application flow computers). However, manufacturers of embedded processors are outside the 
scope of such documents and such scrutiny. There are no equivalent regulatory documents for 
embedded processors. Furthermore, embedded processors tend to produce audit information that 
is arcane, i.e. unusable by most end users. If the flow rate calculation routine is not fully 
disclosed this introduces and element of mystery, a potential source of bias, a hole in the 
uncertainty statement.  
 

In this paper various choices of linearization techniques are discussed, and the pros and cons of 
different methods are considered. The opportunity offered by lack of rules to subtly manipulate 
the meter output through the chosen linearization techniques to give positive or negative biases at 
certain flow rates is described. First though, before curve fitting is discussed, it is necessary to 
discuss what data is being fitted, i.e. what correlating parameter should be chosen, and why. 
Only then, can the method of fitting be properly addressed. 
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3. K factor vs. Flow Rate / Velocity or Reynolds Number 
 

 “It is difficult to get a man to understand something when his salary depends upon his not 
understanding it.”  - Upton Sinclair 
 

Flow metering is a competitive market. There is considerable commercial pressure to keep the 
price of the product down. Flow meter calibration can be expensive. However, for custody 
transfer or fiscal metering applications where so much money is at stake virtually nobody argues 
against the need for flow meter calibration. What is debated is just how this necessary calibration 
and linearization is carried out.  
 

Some flow meter manufacturers have in-house calibration facilities. These facilities tend to be 
liquid flow facilities, usually water facilities, and occasionally oil facilities. They are rarely gas 
facilities. Meter manufacturers find liquid flow facilities more attractive than gas flow facilities 
for in-house calibrations for the following reasons:  
 

1) they are generally simpler, quicker, safer, and less expensive to operate than gas facilities, and  
 

2) the liquid reference flow rate is usually very accurate compared to gas flow reference meters.  
 

Hence, some meter manufacturers offer an in-house liquid flow calibration, but not a gas flow 
calibration, as part of the meter deliverables. As long as the end user is okay with the calibration 
not being carried out by an independent 3rd party, and the calibration flow condition range is 
appropriate for the meter’s application, there is nothing inherently wrong with such practice.  
However, a problem arises if the manufacturer’s in-house liquid calibration flow condition range 
is inappropriate for the meter’s application.  Unfortunately this is an all too common scenario.  
 

Meter manufacturers may not want to admit to themselves, or their prospective client, when their 
in-house liquid calibration will cover an inappropriate flow condition range for some specified 
meter application. Acceptance of such a problem would mean accepting the extra time and 
expense of sending the meter to a 3rd party gas flow calibration facility, perhaps making the 
meter less attractive to the prospective client. Some meter manufacturers seem to be genuinely 
ignorant of this issue, perhaps a case of “it is difficult to get a man to understand something 
when his salary depends upon his not understanding it”. Others may perhaps operate under 
‘willful ignorance’, or at least have an unofficial ‘if they don’t ask / don’t tell’ policy.   
 

The two most common examples of this issue are water calibration data vs. gas or oil flow 
application performance. At the core of this issue is the significant difference in viscosities 
between gas, oil, and water. Flow meters are fluid mechanics devices. All fluid mechanics device 
performances are influenced in some way by fluid viscosity. Internal flow in pipes is influenced 
by viscosity via the Reynolds number. The Reynolds number describes the relationship (i.e. the 
relative quantity) of the opposing inertia force (that can be thought of as the flows propensity to 
keep moving) and the viscous forces (that can be thought of as the flows propensity to not keep 
moving). That is, 
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where Re represents Reynolds number 
            ρ   represents fluid density 
            U  represents average fluid velocity 
            D  represents pipe diameter (an arbitrary chosen length) 
            μ   represents fluid absolute viscosity 
            m  represents mass flow 
 

Therefore, for any given pipe diameter the Reynolds number is dictated by the ratio of mass flow 
to viscosity: 
 

 
 

Fig 1. Influence of Reynolds Number on Flow Profile which has Knock-On Effect on Meters. 
 

The Reynolds number dictates the velocity profile (i.e. the velocity distribution) of pipe flow. A 
low Reynolds number corresponds to a laminar parabolic velocity profile, and a high Reynolds 
number corresponds to a turbulent flattened (‘power law’) velocity profile, as sketched in Fig 1. 
A moderate Reynolds number corresponds to the transitional region between laminar and 
turbulent velocity profiles. The Reynolds number dictates the velocity profile and the velocity 
profile influences flow meter performance. To correctly test most flow meter designs 
performance you have to create the same range of velocity profiles, i.e. test the meter over the 
same range of Reynold numbers, it will see in the field.  
 

An inconvenient truth that further complicates matters is there is no fixed critical Reynolds 
number value where flow suddenly switches from laminar to turbulent flow. Transition between 
laminar and turbulent flow occurs over a Reynolds number range. Furthermore, flow in pipes is 
rather fickle, with initiation of transition taking place in different pipes at different Reynolds 
numbers. Transition from laminar to turbulent flow can be delayed by very smooth pipe with no 
components or protrusions. Transition can be prematurely induced by rough pipe, or 
components, or protrusions. It is generally assumed that a flow meter will have a reasonable inlet 
pipe run that is similar to that used during the calibration, and hence the effect on the velocity 
profile will be similar.  
 

The text books confidentially state that at Re < 2000 flow is, at Re > 4,000 flow is turbulent, and 
transition takes place at 2,000 < Re < 4,000.  Unfortunately in the real world it is not as simple as 
that. There is plenty of evidence (as we will see) that in industrial pipe flows transition from 
laminar to turbulent may not be complete until Re > 12,000. Transition is a particularly difficult 
range for flow metering. With no precise predictable Reynolds number range that covers the 
transitional region, there is no way other than calibration to predict any one flow meter’s 
performance across a given Reynolds number range.  
 

Unfortunately transition can also be unsteady where, within the transitional Reynold number 
range, the velocity profile can randomly switch between laminar and turbulent, or local pockets 
of laminar and turbulent flow can periodically coexist. It is generally assumed from convenience, 
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hope, and some limited calibration repeat points that the velocity profile transition is repeatable. 
Hence, the calibration facilities results over the transition range are assumed representative of 
future performance in the field. The authors certainly do not have a better alternative to suggest.  
  

As ‘seeing is believing’ let us now view data sets of various meter calibrations, where it should 
become evident that the Reynolds number, and not flow rate or velocity is the more appropriate 
correlation parameter for flow meters.  
 

3a. Water vs Gas Flow Calibrations  
 

Flow meters for gas applications are sometimes calibrated at water flow facilities. Consider again 
equation 1. For a given pipe diameter and average velocity, while the liquid density is 
significantly higher than gas density, the liquid viscosity is a couple of orders of magnitude 
higher than that of gas. This means that even high liquid flow rates produce relatively low 
Reynolds numbers compared to typical gas flows.  
 

In order to account for the velocity profile influence it is imperative that a flow meter’s 
calibration covers the application’s full Reynolds number range. A water flow facility cannot 
typically cover the full Reynolds number range of gas flow applications. In the rare case where 
the water flow calibration Reynolds number range does match that of the gas flow application 
then the water calibration is a valid representation of the meter performance. However, if the 
water calibration Reynolds number range does not match that of the gas flow application, then it 
is not a valid representation of the meter’s gas flow performance in the field. This is a common 
problem. The following is a typical example.  
 

A cone DP meter was supplied to a natural gas flow facility (see Fig. 2). The application’s gas 
flow conditions were supplied to the cone meter manufacturer who subsequently supplied a 
meter with an in-house water flow calibration. In service at the highest gas flow rates it was 
noticed that the cone meter was significantly under-reading the gas mass flow rate. The cone 
meter was therefore calibrated by the facility with gas flow. 
 

Fig. 3 shows the manufacturer supplied water calibration data in terms of discharge coefficient 
(Cd) vs. velocity (or volume flow rate). For a constant cross sectional area the velocity and 
volume flow rate are interchangeable parameters.  This flow range corresponded to a water flow 
Reynolds number range of approximately 50,000 to 415,000. This water flow range was high 
enough that the velocity profile would have been always turbulent. A constant Cd fitted the water 
calibration data to 0.25% uncertainty. Fig. 3 also shows the subsequent gas flow calibration data. 
This corresponded to a gas flow Reynolds number range of approximately 700,000 to 3,500,000. 
The Cd vs. velocity plot clearly shows that the different fluids produce distinctly different Cd 
values at the same flow velocity. This is a clear indication that velocity (or flow rate) is an 
incorrect correlating parameter. 
  

Fig 4 shows the water and gas data plotted as Cd vs Reynolds number. The relative uncertainty 
bars for the water and gas reference flow data is also shown. The application (and corresponding 
gas calibration data) has a maximum Reynolds number about eight times larger than achieved by 
the manufacturers water calibration facility. It is clear that extrapolating the water calibration 
data does not give the correct Cd at higher Reynolds numbers. At that maximum Reynolds 
number the discharge coefficient differs from the water calibration data by nearly 2%. Where the 
water and gas Reynolds number test ranges overlap the results were similar. That is, there is  
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Fig 2. Water Flow calibrated Cone DP Meter Installed in a Gas Pipeline. 

 

 
Fig 3. Cone Meter Water and Gas Data Plotted in Terms of Velocity.  

 

 
Fig 4. Comparison of Cone Meter Water and Gas Calibration Data, Cd vs. Reynolds Number.  

 

nothing wrong with the water calibration data within its Reynolds number range, but it is just not 
possible to extrapolate the result to much higher Reynolds numbers and expect to maintain no 
bias. Note that as all the water and gas data are well inside the turbulent flow region the 
performance shift is due to changes in the turbulent velocity profile (and possibly other 
influences) and not transitional flow. Taking the cone meter water and gas calibration data  
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Fig 5. 2”, 0.75β Cone Meter Water and Gas Calibration Data 

 

         
Fig 6. ConocoPhillips 8” Venturi Meter Water and Gas Calibration Data 

 

together Fig 4 shows that a piece wise linear interpolation data fit can easily combine the two 
calibration data sets with low uncertainty.  
 

The 2% shift shown in Fig 4 is just for that particular example. Other individual meters (of 
various designs) can have greater or less shifts in case by case basis.  For example, Fig 5 shows a 
2”, 0.75β cone meter with water and gas calibration data. Extrapolating the manufacturer’s in-
house water calibration with a maximum Reynolds number of 100,000 to 4 million Reynolds 
number gas flow caused a bias > 4%.  Fig 6 reproduces ConocoPhillips data (see Geach et al [1]) 
for an 8” Venturi meter. Here extrapolating the water data to higher gas flow Reynolds numbers 
caused a maximum bias of approximately 1%.  
 

These water vs. gas calibration examples only show Reynold number ranges that create turbulent 
flow. This issue becomes accentuated if we consider water vs. oil or different grade of oil 
calibrations. The significant difference in water and various oil viscosities coupled with the 
lower flow velocities of liquid flows means such Reynolds number ranges often straddle laminar, 
transition, and turbulent velocity profiles. This makes the issue of using Reynolds number 
instead of flow rate or velocity as the correlating parameter all the more acute. Several examples 
of this will now be shown.  
 

3b. Calibrations Using Different Liquid Viscosities 
 

Figs 7 and 9 show an 8” cone meter and a 4” Venturi meter at the CEESI and TUVNEL oil 
facility respectively. Both meters were calibrated by using different oils of significantly different 
viscosity across the same flow rate/ velocity range. Figs 8 & 10 show both meter’s calibration 
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Fig 7. 8”, 0.75β Cone Meter at the CEESI Oil Facility. 

 

 
Fig 8. 8”, 0.75β Cone Meter Data with Different Viscosity Oils, Cd vs. Velocity & Reynolds No. 
 

 
Fig 9. 4” Venturi Meter at the TUVNEL Oil Facility. 

 

 
Fig 10. 4”, Venturi Meter Data with Different Viscosity Oils, Cd vs. Velocity & Reynolds No. 

 

results when using Cd vs. velocity (or volume flow rate) and Cd vs. Reynolds number. Clearly, 
velocity is not an appropriate correlating parameter. For both DP meters a given velocity (i.e. 
volume flow rate) can produce three distinctly different discharge coefficients. That is, if either 
of these meters are calibrated with one oil viscosity, and the Cd correlated to velocity, the meter’s 
flow rate prediction will have a significant bias if the meter is subsequently used with oils of a 
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significantly different viscosity. In contrast, the Cd vs. Reynolds number results are quite 
remarkable. In each case the separate Cd vs. velocity curves that looked unrelated now look like 
one curve, fitting together like parts of a jigsaw. This DP meter data clearly highlights the 
importance of calibrating DP meter Cd vs. Reynolds number.   
 

 
Fig.  11. 6” Liquid Turbines at the CEESI Oil Facility.  

 

 
Fig 12. 6” Liquid Turbine Meter Oil Calibration Data, K vs. Velocity.  

 

 
Fig 13. 6” Liquid Turbine Meter Oil Calibration Data, K vs. Reynolds Number  

 

This issue is not restricted to DP meters. Many meter designs performances are influenced by 
viscosity, i.e. Reynolds number. The following are examples for liquid flow turbine, ultrasonic 
and Coriolis meters. Fig 11 shows 6” liquid turbine meters at the CEESI oil facility. Fig 12 
shows turbine meter factor (K) vs. velocity data for three different viscosity oil. At low velocity 
different oils give different meter factors. In this case velocity is not a good correlating 
parameter. Figure 13 shows the same data plotted as K vs. Reynolds number. Again, not only  
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Fig 14. 6” Liquid Coriolis Meter Oil Calibration Data, Velocity vs. Meter Factor 

 

 
Fig 15. 6” Liquid Coriolis Meter Oil Calibration Data, Reynolds Number vs. Meter Factor 

 
does the data now look like one curve, the three separate K vs. velocity curves which looked 
unrelated, now fit together like parts of a jigsaw. Furthermore, when considering gas turbine 
meters AGA 7 (2007) say in its Section 6.3.2 “… the expected operating Reynolds number range 
and / or density for a meter needs to be taken into account when designing a calibration 
program”. 
 

Fig 14 shows blinded data from an 8” liquid Coriolis meter calibrated at a 3rd party oil test 
facility. Again, three different viscosity oil calibration data sets are shown where the correlating 
parameter was volume flow rate. At lower flows different oils give different meter factors. That 
 

 
Fig 16. 10” Liquid Ultrasonic Meter Oil Calibration Data, Velocity vs. Meter Factor 
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Fig 17. 10” Liquid Ultrasonic Meter Oil Calibration Data, Reynolds Number vs. Meter Factor 

 

is, flow rate is not a good correlating parameter. Fig 15 shows the same data plotted to Reynolds 
number. Again, the three separate curves created by plotting volume flow rate vs. meter factor 
which looked unrelated, are now seen to fit together well. Other 3rd parties have reported the 
same Coriolis meter phenomenon, e.g. NEL (Mills [2]).  

 

Fig 16 shows a blinded 10” liquid ultrasonic meter data set from the CEESI oil facility. Again, 
three different viscosity oil data sets are shown where the correlating parameter was velocity. 
The high viscosity oil gives a different meter factor than the two lower viscosity oils. Again, 
velocity is not a good correlating parameter. Fig 17 shows the same ultrasonic meter data plotted 
to Reynolds number. Yet again, using Reynolds number makes the data fit one continuous curve.  
 

Summary on Reynolds Number vs. Flow Rate: 
 

“For a successful technology, reality must take precedence over public relations, for nature 
cannot be fooled.”  Richard Feynman  
  

The authors are not suggesting that Reynolds number is guaranteed to be the single correlating 
parameter for all flow meter designs in all conditions. E.g., at low flow rates turbine meters are 
influenced by bearing friction issues, and it is arguable other correlating parameters should be 
included. There are meter manufacturers that claim their meter operates better when calibrated to 
the velocity or flow rate and not Reynolds number. Some give various counter arguments to why 
they believe velocity is better than Reynolds number for their meter. However, for many meters 
in many flow conditions there is significant theoretical and calibration evidence that Reynolds 
number is the most appropriate correlating parameter.  
 

It is not by coincidence that the international standard for the orifice meter (ISO 5167-2) 
expresses the Cd as a function of Reynolds number. ISO 5167-5, the cone meter standard, states 
when calibrating a cone meter it should be calibrated over its entire Reynolds number range of 
operation. The Venturi meter standard ISO 5167-4, is more ambiguous stating a Cd over a given 
Reynolds number range, not flow rate, but stating, “… for optimum accuracy Venturi tubes for 
use in gas should be calibrated over the required flowrate range”.  
 

Although ISO does not explicitly state that Reynolds number should be the correlating factor for 
a vortex meter, they do imply this by saying “… K-factor may be presented as a function of 
either the pipe Reynolds number or flow rate at specific set thermodynamic conditions.” 
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However, for a given homogenous fluid, setting the thermodynamic conditions means setting the 
density and viscosity and therefore the Reynolds number range. ASME MFC-6-2013 shows 
turbine meters being calibrated to Reynolds number.  
 

Many oil meters (e.g. turbine meters) are periodically re-calibrated (i.e. ‘proved’) in the field. 
Provers offer accurate volume flow reference data. However, a ‘prove’ is carried out at whatever 
the liquid viscosity happens to be. The temperature and viscosity of oil can change significantly 
between proves. Hence, proves over a constant volume flow range at different oil viscosities 
constitutes proves over different Reynolds number ranges. Although API do not explicitly state 
that the Reynolds number should be the correlating factor, they do imply this by saying a meter 
should be reproved (over the same flow rate) whenever there is a change of fluid viscosity.   
 

It is an unfortunate accident of nature that the typical laminar, transition, and turbulent flow 
profile Reynolds number range falls in the typical flow ranges of many production oil flows. The 
associated complexity of the linearization techniques can potentially produce increases in 
uncertainty or metering biases. This complexity in flow metering overlaps the typical oil flow 
ranges where industry demands extremely low metering uncertainty. Meter manufacturers are 
under commercial pressure to be seen to meet the tight specification demands. As such, for 
meters with embedded processors, the temptation to add extra non-transparent linearization 
techniques within the processor’s inaccessible code is no doubt considerable.  
 

A flow meter performance influenced by Reynolds number is in practice very inconvenient. It 
potentially makes flow meter calibration more expensive and time consuming. It also means that 
the end user is required to know the fluid viscosity in the field. This is not trivial. With gas 
composition and temperature known it is relatively straight forward to predict gas viscosity to a 
low uncertainty, although it is still another burden on the operator. It can be significantly more 
problematic to predict oil viscosities in the field to low uncertainty. Being required to supply a 
low uncertainty viscosity value makes operating the flow meter more complex. Nevertheless, 
physical law cannot be ignored simply for the convenience of manufacturer / end user relations. 
As Richard Feynman [3] told NASA in the Challenger Space Shuttle disaster report “…for a 
successful technology, reality must take precedence over public relations, for nature cannot be 
fooled.” Inconvenient as it may be, the reality for many flow meter end users is that their meters 
are best correlated to Reynolds number, and not velocity or flow rate. In many cases: 
 

Calibration of a flow meter using a velocity or flowrate range that does not coincide with the 
flow meter applications entire Reynolds number range can potentially result in an inappropriate 
linearization of the meter and an associated flow rate prediction bias.  
 

We have now discussed what should be data fitted. It is now time to discuss how we are fitting 
data, and why are we choosing particular methods. Although the authors advocates the use of 
Reynolds number the following discussion holds for any correlating parameter one chooses.  
 

4. What Constitutes an Appropriate Linearization Technique?  
 

“I apologize for lying to you. I promise I won't deceive you except in matters of this sort.”  
Spiro Agnew, Vice-President of the United States 1969-73. 
 

The authors do not have any pretensions that they are particularly skilled in the mathematical 
techniques of ‘regression analysis’, i.e. ‘curve fitting’, compared to many highly qualified and 
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experienced engineers. Nor do the authors intend to delve into the finer mathematical details of 
curve fitting. That is the subject for a dedicated long mathematical text, and is not only not 
possible in a single paper, but not required here. The core point the authors want to make is that 
without set rules there is opportunity for the curve fitter to adopt a pick and mix attitude to the 
curve fit methodology. This gives ‘wiggle room’ that allows the curve fitter, if he deems it 
necessary, to manipulate the fit such that the perceived meter performance tends to whatever 
performance is claimed without breaking any rules or accepted norms. However, in such cases 
the real performance in service may not be as perceived from the calibration report. Industry 
should pay more attention to the non-trivial issue of meter linearization if the flow meter 
uncertainty claims are to have the integrity expected by the hydrocarbon production industry.  
 

Curve fitting (i.e. linearization) can be carried out in an end user mainframe computer, flow 
computers, or in the embedded processors integral to some flow meter system packages. 
Mainframe computers and programmable flow computers can be programmed to apply any 
linearization technique the end user deems suitable. Also, although not always fully transparent, 
meter system manufacturers can program embedded processors with any linearization technique 
they deem suitable. Hence, it is valid to discuss general data fitting techniques here, as any data 
fitting technique, i.e. any correlating equation form, could be applied.  
 

Flow computers tend to only offer piece wise linear interpolation (i.e. a ‘look up table’) as a pre-
programmed linearization methodology. Many end users of flow computers do not utilize the 
programmable capability, and default to this method.  Also, some ultrasonic meter manufacturers 
use piece wise linear interpolation in their embedded processors. Two of the authors have 
historically been verbal opponents of such practice, arguing that it produces an artificially good 
result (i.e. a seemingly perfect coefficient of determination of R2 =1, and no apparent data fit 
uncertainty) more to do with show than reality. However, the closer one looks, for all it has 
flaws, the more benefits piece wise linear interpolation seems to have relative to the alternatives.  
 

4a. Fully-Empirical Fitting, Semi-Empirical Fitting, and Modeling  
 

If the governing physical law of some phenomenon is completely understood then it is possible 
to create a mathematical expression (or ‘model’) to describe it.  Such a model is theoretical, and 
if it is correct then the model will describe high quality (i.e. low uncertainty) data accurately. 
This is the procedure that forms most theoretical flow meter flow rate calculations. However, 
flow meters are calibrated because in virtually all cases the theoretical understanding is not 
complete. There are inevitably some secondary influences that are not fully understood. A meter 
factor is required to correct for these secondary influences, and as they are not fully theoretically 
predictable, this meter factor cannot be expressed by a theoretical mathematical model. Hence, 
all meter factor calibration curve fits are somewhat empirical.  
 

There are two forms of empirical data fits, i.e. fully and semi empirical fits. Fully empirical (aka 
‘blind’) data fits express no understanding of the underlying physical laws. They are no more 
than mathematical expressions that reproduce the data set (and facilitate interpolation between 
the points). Semi-empirical data fits express some limited (but incomplete) understanding of the 
underlying physical laws governing these secondary influences. Semi-empirical data fits are a 
blend of theoretical modeling and empirical data fitting They are therefore fundamentally more 
robust for interpolation and extrapolation than fully empirical data fits. However, unfortunately 
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most flow meter calibrations are carried out because the theoretical understanding has been 
exhausted. Hence, a largely unspoken reality is most calibration data fits are fully empirical.  
 

There are a few exceptions. For example, the use of Reynolds number instead of flow rate or 
velocity to correlate some meter factors is due to the theoretical considerations of the influence 
of viscosity. Another example is, due to further theoretical considerations beyond that used for 
the DP meter general equation, Miller [4] shows that based on the work of Murdock, for 
turbulent flow the form of a DP meter’s discharge coefficient calibration fit could be: 
 

                                                                
n
D

dd

b
CC

Re
                                                             (2) 

 

where Cd∞ is the discharge coefficient at infinite pipe Reynolds number (ReD), and ‘n’ and ‘b’ 
are data fit values. Murdock modified theoretical work of Blasius to suggest n=1/5 was a suitable 
value. Nevertheless, most flow meter calibration curve fits are fully empirical. In the following 
text all curve fit discussions are for fully empirical fits.  
 

4b. Curve Fitting is More Challenging than Many Presuppose 
 

Curve fitting is often thought of as a trivial exercise, but it can be problematic. For example, take 
the hypothetical gas ultrasonic meter data set example offered by AGA 9 Ed 1 (shown as blue 
diamond points in Fig 18). This standard has been recently updated and this hypothetical data 
changes, but this doesn’t matter, we are using this data set as an example only.  
 

 
Fig 18. Hypothetical Gas Ultrasonic Meter Data with Typical Curve Fits 

 

Superimposed on the data plot are five sample curve fit equations. There is the averaged constant 
value, linear line, 2nd & 3rd order polynomials, and the ‘best fit’ proposal from a commercial data 
fitting software. Although to the eye the data looks like a simple curve none of the equations fit 
the data particularly well. There is nothing wrong with this hypothetical data set, it is a realistic 
response for such a meter. This is a common problem for all flow meter calibrations. The data 
may look like a smooth curve but it may still be problematic to find a suitable simple 
mathematical expression to describe it. Furthermore, if every calibration data set required a 
different equation form then each meter’s calibration software would then be bespoke, which 
would be very time consuming and inconvenient to the various meter manufacturers. This is one 
reason many in industry lean towards piece wise linear interpolation (aka as a look up table). 
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This technique is all but guaranteed to fit any and all data sets. This alleviates the problem of 
finding a suitable curve fit per meter. It is a method of standardizing the calibration data fit 
procedure. A piece wise linear interpolation fit of this hypothetical data is discussed in Section 5.  
 

4c. Best Coefficient of Determination or Maximum Flow Rate Uncertainty? 
 

“We want certainty to our uncertainty” Phil Robbins, Petronas Consultant 
 

There is no single ‘best’ or ‘most appropriate’ way to carry out a generic data fit. What 
constitutes the ‘best fit’ is subjective. Academics, researchers, and students writing theses tend to 
default to using the coefficient of determination (i.e. ‘R2’) as the best method for assessing the 
quality of a curve fit. Equation 3 shows the R2 calculation, 
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where, for a calibration data set of ‘n’ calibration points of K vs. Re (or alternative flow rate 
parameter): 
                           SSres   is the sum of squares of residuals 
                           SStot   is the total sum of squares 
                           Ki      is the individual meter factor of each calibration point 
                           f(Rei) is the curve fit prediction of the meter factor of each point 
                           Kav    is the average meter factor of the calibration data set 
 

The coefficient of determination will generally be bound by 0 ≤ R2 ≤ 1. An R2 between 0 and 1 
indicates the extent to which the meter factor is predictable. An R2 of zero indicates that the 
meter factor cannot be predicted by the Reynolds number (or other flow rate parameter) fit, and 
an R2 of one indicates that the calibration data meter factors are perfectly predicted by the fit.  
 

The commonly used (but limited capability) curve fitting function in Microsoft ExcelTM and 
more sophisticated commercial curve fitting software (such as TableCurveTM) use R2 as the 
default quality indicator of the suggested curve fit/s. However, the hydrocarbon production 
industry does not automatically use R2 as the indicator of the best fit. And indeed they are free to 
choose any linearization technique because… 
 

As far as the authors are aware there are no rules set by standards, regulators or contracts as to 
what constitutes an industry accepted linearization / curve fitting method.  
 

The hydrocarbon production industry is generally more interested in finding a flow meter 
linearization technique that meets the end users practical requirements than following what 
academia does. This requirement tends to be that across a stated flow range the flow rate 
prediction uncertainty will be guaranteed to some specified ‘x%’ uncertainty to 95% confidence. 
That is what Phil Robbins means by “we want certainty to our uncertainty”. Using the coefficient 
of determination (R2) does not guarantee this. The coefficient of determination gives a macro 
view of the overall quality of the curve fit across the whole data set. It considers the data set as a 
whole, not the individual points. In effect it can ‘sacrifice’ a point (or for large data sets a few 
points) in the interest of getting the best overall fit. This can result in the highest (‘best’) R2 fit 
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failing to meet the end user requirements while a different fit with a lower R2 can comply. The 
following random example highlights the point.  
 

 
Fig 19. 8” Cone Meter Calibration Best R2 Linear Data Fit. 

 

 
Fig 20. 8” Cone Meter Calibration 0.5% Uncertainty Liner Data Fit. 

 

Fig 19 shows a random 8”, 0.55β cone meter eleven point gas calibration data set of Cd vs. Re.  
The type of meter, the particular meter factor, the required uncertainty, and the form of the data 
fit are irrelevant to the general curve fitting point being made here. The data shows that one point 
looks like an outlier. However, this was not a ‘bad point’. This example is not describing any 
error by the calibration facility. Repeat tests gave the same result. Such anomalies in data sets are 
relatively common in various flow meter results. They can be caused by various physical 
phenomena and they cannot be ignored because they are inconvenient. They will occur in the 
field as well as the calibration facility and need to be accounted for. 
 

In this example, say the cone meter is required to have a Cd predictable to 0.5% uncertainty at 
95% confidence. As way of example the Microsoft Excel linear fit option is selected. The 
resulting fit offered had a R2 value of 0.911. Fig 19 shows that over the data set this curve fit is 
indeed very close to the majority of the points. For ten of the points this fit agrees with the data 
to < 0.25%. However, there is the single point that disagrees with this fit to > 0.5%. This point 
has been ‘sacrificed’ by the R2 method in order to achieve the best fit of the majority of the data. 
But, this means that by choosing the highest (best) R2 fit the 0.5% uncertainty to 95% confidence 
requirement has not been met. Fig 20 shows an alternative fit on the same data. The new fit has a 
significantly reduced R2 value of 0.817, but now meets the 0.5% uncertainty stipulation across 
all calibration data points. This is done at the expense of the average fit quality. By fitting the 
outlying point within the 0.5% band the other ten points now have a fit that agrees with the data 
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to only < 0.45%. But in many cases industry does not seem to care. It is more important to meet 
the performance required by the application across the entire Reynolds number range than to 
have on average the best overall fit with an outlier or two.  
 

There is no right or wrong fit. How anybody fits calibration data depends on what they wish to 
achieve. It is a subjective exercise. However, there is a cost to choosing the 0.5% uncertainty 
guaranteed fit over the best R2 fit. Most meters are calibrated across a range where the maximum 
calibration range is slightly in excess of the expected maximum in the field. In this case the 
maximum Reynolds number the meter is to encounter in the field can reasonably be expected to 
be about 7e6. For a natural gas flow at 50 Bar, 25oC, and 50 MMSCFD, for gas priced at $2.90 
per million BTU, the corresponding 7e6 Reynolds number flow has a value per day of 
approximately $143.5K. If the 0.5% uncertainty guaranteed fit is chosen instead of the best R2 
value then the corresponding predicted discharge coefficient at normal meter flow conditions 
drops from 0.827 to 0.825, i.e. a -0.26% shift. This means the meter will predict $366 less flow 
per day, i.e. $133.6K less flow per annum, or for a meter life span of ten year, $1.34 million less 
flow. This is not due to meter performance per se, but by the choice of linearization technique.  
  
A requirement to linearize the meter such that some percentage uncertainty guarantee is met 
across the entire applications flow range can inadvertently cause an increase in metering bias at 
the typical flow conditions in which the meter usually operates.  
 

4d. Loading the Sweet Spot 
 

Statistical tools are blind to physical laws. To achieve x% uncertainty at 95% confidence you 
only need nineteen out of every twenty points to meet the stipulated x% uncertainty 
performance. Therefore, if one point out of twenty is ‘an outlier’, even if it represents a real 
reproducible physical phenomenon at those flow conditions, the meter’s curve fit can still be said 
to meet the expected performance, even though it really doesn’t. This can and does happen by 
accident, although not many flow meters have a twenty or more point calibration.  
 

 
Fig 21. A Random Meter Calibration Result with Extra Sweet Spot Data Points.  

 

End user demands for ‘x%’ uncertainty at 95% confidence are not always very detailed. This can 
give scope for interpretation when linearizing a flow meter. With no curve fitting rules the 
practice of deliberately loading a ‘sweet spot’ can allow a problem meter to ‘pass’ a calibration. 
As a random example let us continue with the example in Section 4c, although again, the same 
scenario can be carried out on any meter type. The problem in Fig 19 is that there are eleven 
points and one is outside the stipulated 0.5% uncertainty, i.e. only 91% of the data falls within 
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the required < 0.5%. The outlier is not a bad point, it is caused by some unspecified physical 
cause. So, rather than fail the meter, without any stated linearization rules the manufacturer could 
hypothetically decide to test the meter at nine more flow rate points that are in the ‘sweet spot’, 
i.e. where the initial data indicates that the meter can be reasonably expected to ‘behave itself’. 
As the new nine points give similar results to the previous calibration points in that same flow 
rate region the manufacturer could then claim that 19/20 of the calibration data now fits the 0.5% 
uncertainty to 95% confidence. Fig 21 shows the same data as Fig 19, but with extra sweet spot 
data added. Now the original best R2 data fit as shown in Fig 19 can be used and it would meet 
the 0.5% uncertainty at 95% confidence requirement. This wouldn’t necessarily tell the whole 
story, as at a low Reynolds number the meter will again have the outlier. But without 
linearization rules forbidding it, this practice is technically allowable.  
 

Whether such a practice is acceptable is a decision for the meter manufacturers and their end user 
clients. However, it is interesting to note that the aim of such end user stipulated requirements is 
to attempt to assure good measurement. But Section 4c showed that such a stipulation can 
sometimes inadvertently create the opposite effect in practice. In this example by loading the 
data set with sweet spot data, and thereby choosing the highest R2 linear fit, the likely bias 
discussed in Section 4c is removed. This is another example of how flow meter linearization 
techniques are not always objective but actually rather subjective.   
 

4e. Issues with Polynomials (and Other) Curve Fits 
 

Fig 22 shows the AGA 9 Ed 1 hypothetical ultrasonic meter data set with an Excel fitted 3rd 
order polynomial curve. For all Excel is not considered a commercial curve fitting software 
package it is undoubtedly one of the most commonly used generic data fitting software. The 
“Excel Data Fit Function Statement” shown in Fig 22 is exactly as it is produced by Excel. It is 
wrong. The drawn curve appears correct, but the corresponding stated equation has too few 
significant figures. The stated equation actually has a R2 value of only 0.114, not the claimed 
0.614. To achieve an R2 value of 0.614 you need to use more significant figures. 
 

 
Fig 22. Hypothetical Ultrasonic Meter Calibration Data Set With 3rd Order Polynomial. 

 

A polynomial fit, and various other curve fit equations, are very sensitive to the number of 
significant figures included in the constants. The Excel software has defaulted to showing one 
significant figure in the constant associated with the third power term. This stated equation 
produces a relatively poor result. Table 1 shows the performance of three equations, Equation 1 
being the stated equation by Excel, Equation 2 using two significant figures in the third power 
term, and Equation 3 showing more significant figures in the second and third power terms. The 
number of significant figures clearly affects the result. As the number of significant figures  
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Calibration 
Velocity (ft/s) 

Calibration 
Found % Error 

Equation 1 
Prediction % 

Error  

Equation 2 
Prediction % 

Error 

Equation 3 
Prediction % 

Error 
90 -0.3 0.99 0.17 -0.06 
70 0.0 0.26 0.43 0.31 
50 0.1 0.49 -0.14 -0.19 
35 0.4 0.71 -0.23 -0.25 
20 0.7 0.53 0.18 0.18 
10 0.5 -0.01 0.51 0.51 
5 -0.9 -0.46 -0.44 -0.44 

Table 1. Relative Effects of Significant Figures in Polynomial Fits 
 

Equation 1:                         y = 2E-5x3-0.003x2+0.1305x-1.0379                            R2 = 0.114   
Equation 2:                         y = 1.8E-5x3-0.003x2+0.1305x-1.0379                         R2 = 0.580   
Equation 3:                         y = 1.82E-5x3-0.00299x2+0.1305x-1.0379                   R2 = 0.614 
 

increases the curve fits performance improves. It takes Equation 3 to get the performance (i.e. R2 
value) claimed by Excel. Use of the stated Equation 1 would have caused on average higher flow 
rate prediction biases. There are many cases where such an induced bias is financially significant 
but subtle and may well go unnoticed. A lesson from this is it is not wise to blindly accept a 
curve fit equation without first double checking it by an independent means. 
 

4e.1 The Effect of Using Different Number of Significant Figures 
 

As polynomial (and other curve) fits are sensitive to the number of significant figures used then 
there is potential for flow rate prediction biases to be introduced by the choice of number of 
significant figures. For example, let’s assume in this hypothetical example that Fig 22 represents 
a calibration of a 16”, sch 80 ultrasonic meter that is to be linearized using a 3rd order 
polynomial. If the meter is being used at say a pressure of 50 bar and 27 m/s (90 ft/s), this 
corresponds to 453 MMSCFD, i.e. approximately $1.3 million per day. Table 1 shows that 
depending on if Equation 2 or Equation 3 is chosen the curve fit will predict +0.17% or -0.06% 
bias respectively. This is a difference (i.e. bias) of 0.23%, i.e. approximately $1.1 million per 
annum, or $7.7 million per a seven year recalibration cycle.  
 

A little spoken fact about all non- piece wise linear interpolation curve fitting is once a curve fit 
is selected and implemented into the relevant computer it in effect replaces the actual data set. 
Although it is in reality an imperfect expression of the actual calibration data it is treated as the 
data set. Whereas the actual calibration data will be logged in a report, the operation of the meter 
uses the assigned curve fit and does not reference the original data.  
 

Do you use equation 2 and predict 0.23% more gas flow than equation 3, or equation 3 and 
predict 0.23% less gas flow than equation 2? This is not an increase in uncertainty. This is a 
guaranteed curve fit induced bias. If equation 2 is chosen then the meter will predict more flow 
and the seller wins. If equation 3 is chosen then the meter will predict less flow and the buyer 
wins. Yet, the authors are unaware of any formal rules regulating this issue.  
 

4e.2  The Effect of Choosing Different Order Polynomials (or Different Generic Fits) 
 

Fig 23 shows real calibration data from a randomly selected and blinded data set from a 12” 
ultrasonic meter. This meter meets the AGA9 ‘as found’ performance limits. It could be said to  
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Fig 23. Random Selected Blinded 12” Ultrasonic Meter Calibration Data 

 

 
Fig 24. Second & Third Order Polynomial Curve Fits on 12” Ultrasonic Meter Calibration Data. 

 

 
 

Fig 25. Effect of Second & Third Order Polynomial Curve Fits on 12” Ultrasonic Meter 
Calibration Data.at Applications Expected Flow Range.  

 

be rather ‘well behaved’ meter, i.e. the percentage error is rather constant across much of the 
flow range. The data is expressed as meter percentage error (K%) vs. Reynolds number, although 
the same point could be made if the data was shown as K% vs. flow rate or velocity. 
 

AGA 9 and ISO allow polynomial curve fitting as an option. There is no stipulation on what 
order of polynomial should be used. ISO does not discuss this. AGA 9 suggests that ‘normally a 
2nd order polynomial is used”, but there is no restriction on using higher orders. 3rd order 
polynomials are relatively common. Fig 24 shows a 2nd & 3rd order polynomial fit. The 2nd order 
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polynomial produces a R2 of 0.333 and a 0.1% uncertainty. The 3rd order polynomial produces a 
R2 of 0.507 and again a 0.1% uncertainty. There isn’t much difference, but the 3rd order 
polynomial can be said to offer a marginally better performance (shown by the higher R2 value).  
 

Does it practically matter which of the two curve fits are chosen? Let us assume for the sake of 
argument that this meters is to be used in the field at around 70% of the maximum flow tested. 
That is, the meter will operate around the 2.1e7 Reynolds number calibration point (i.e. 21 m/s). 
Fig 25 looks at the two polynomial fits in detail around that point. As the fit is not perfect we see 
that the 3rd order polynomial fit over-predicts the error by 0.026%, while the second order 
polynomial fit under-predicts the error by -0.02%. However, the choice is to use the 2nd or the 3rd 
polynomial curve fit. Once implemented the fit is no longer referenced to the actual data set. 
Therefore, the choice is do you choose the 2nd order polynomial and predict 0.046% less gas 
flow, or choose the 3rd order and predict 0.046% more gas flow. Again, this is not a small 
increase in uncertainty. This is a guaranteed curve fit induced bias. For a custody transfer meter, 
if the 3rd order polynomial is chosen then the meter will predict more flow and the seller wins. If 
the 2nd order polynomial is chosen then the meter will predict less flow and the buyer wins. 
Regardless of which of the two fits is chosen there is a winner and a loser. If the loser is 
informed, to accept this is to be complicit in the choice.   
 

Perhaps 0.046% confirmed bias sounds trivial? At 70 Bar this flow rate is approximately         
340 MMSCFD which has a market value of approximately $986K dollars per day. Therefore, a 
0.046% curve fit induced bias amounts to approximately $165K per annum, or approximately   
$1 million guaranteed bias over a seven year re-calibration interval. Note that this is a random 
example using a moderate sized ultrasonic meter (12”) with a relatively linear calibration data 
set, comparing two different polynomials. Larger meters (with more flow), more variable data 
(leading to bigger differences in curve fit predictions) and different fit comparisons can produce 
significantly larger biases. Yet, the authors are unaware of any formal rules regulating this issue.  
 

4e.3 Extrapolating and Interpolating Polynomials 
 

Polynomials (and some other) fits are well known to be a poor choice for curve fitting calibration 
data that may have to be extrapolated. They have the potential to diverge immediately outside the 
upper and lower limits of the data set. The higher the order of polynomial the more likely and 
severed this issue is likely to be. An extrapolated diverged curve fit produces nonsense. For all 
curve fits extrapolate at your own risk, but polynomials are known to be particularly sensitive to 
the issue. However, polynomials (and some other) fits are generally assumed to be a suitable tool 
for interpolation. This is an essential requirement of all suitable curve fits. As the calibration 
shows the meter’s performance at the calibration points, the need for curve fitting comes from 
the requirement to predict the meters performance between the calibration points. The 
fundamental assumption is that the span of unknown performance between the calibration data 
points is reasonably linear. This is an unspoken reality of flow meter linearization, nobody 
knows for sure what the meter performance is between the calibration points, and the fit is 
therefore an educated guess.  
 

Fig 26 shows a hypothetical turbine meter calibration data set. The K factor is correlated to 
Reynolds number as suggested by AGA 7. The shape is a typical ‘turbine curve’, showing a 
relatively linear relationship at high Reynolds number and then rising up and falling off as the 
viscosity and bearing friction effects begin to be more significant.  The graph also shows 2nd, 3rd,  
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Fig 26. Hypothetical Turbine Meter Curve with 2nd, 3rd, & 4th Order Polynomial Fits. 

 

 
Fig 27. Hypothetical Turbine Meter Curve with 20th Order Polynomial Fit. 

 

and 4th order polynomial fits. As the order of the polynomial increases the R2 value increases and 
the uncertainty in the K factor prediction reduces. That is, both common quality of fit checks are 
indicating that the higher the order of polynomial, i.e. the more complex the fit, the better the fit. 
So by that rationale the higher the order of the polynomial (or more complex any fit) the better 
the fit. Except, this is not so… 
 

Fig 27 shows the same data fitted by TableCurve 2DTM to a 20th order polynomial. Markings 
show where the calibration data is. The R2 is virtually one (i.e. the coefficient of determination is 
suggesting the fit is near perfect). The uncertainty of the calibration K-factor data predicted by 
the 20 order polynomial is virtually zero. However, the fit is obviously terrible. This example is 
obviously an exaggeration, but such exaggerations are good for making a point. Fig 27 shows the 
divergence of the polynomial at the limits of the data set. But it also shows that the R2 and x% 
uncertainty checks do not necessarily account for interpolation failings. This fit has got a major 
problem between the two highest Reynolds numbers of the data set. Anybody looking at it would 
know that despite the very high R2 and very low x% uncertainty it is not a suitable fit. Common 
sense tells you so. There is not anything wrong with checking a fit to R2 or x% uncertainty, they 
just don’t tell the whole story. But, how do you convert this common sense observation into a 
formal mathematical check? In many real world examples the issue will be far more subtle, not 
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as visually obvious, but yet still have a significant effect on measurement. Perhaps different 
meter manufacturers have their own curve fit check methods to account for such issues, but they 
are not commonly discussed or agreed upon. This is an example of how the fitting of non-piece 
wise linear interpolation curve fits tends to be a bit of an unregulated black art.  
 

4f.   Fitting A Constant Value Meter Factor 
 

“Plans based on average assumptions are wrong on average.” Prof. Sam L. Savage, Stanford 
University 
 

 
Fig 28. Reproduction of ASME MFC-6-2013 [5] Vortex Meter Standard Graph. 

 

In some applications some flow meters (e.g. vortex meters) are used with a constant meter factor 
(Kcon). Fig 28 reproduces a vortex meter graph by ASME. A constant K-factor is to be chosen 
that will produce a linearity of ±x% across the designated linear range. Once the meter is 
calibrated, the maximum (Kmax) and minimum (Kmin) values across the designated range shall be 
used to find the constant K-factor (Kcon) via equation 4 below. ASME calls this factor the mean 
K factor (Kmean) although this can be misleading. It is only the mean of the maximum and 
minimum points, not the data set as a whole. This procedure is commonly followed for constant 
meter factors. It is implied that this Kcon will produce ±x% across the designated range. It does 
not. In practice it is a good approximation, but strictly speaking this is incorrect.  
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Equation 4 actually produces equal magnitude differences. This is different to equal relative 
(percentage) differences. Equation 5 produces the desired equal percentage difference. To 
highlight this let us again consider an exaggerated case. Say there was a (very poor performing 
hypothetical) flow meter that gave a maximum and minimum K-factor of 150 and 50 
respectively. Fig 29 shows the effect of using equations 4 and 5. Equation 4 does not produce 
equal ± x% uncertainty. It produces an equal magnitude difference (i.e. ±50) and different 
relative differences (i.e. -33% /+100%). Equation 5 produces an unequal magnitude difference 
(i.e.± -75/+25) and equal relative differences (i.e. -50% / +50%).  
 

There is no correct scientific constant K-factor, it is a choice based on what the meter operator 
wants to achieve. Again, the choice is subjective. If the operator wants to be exposed to equal     
± magnitudes of uncertainty then Equation 4 is required. If the operator wants to be exposed to 
equal ± percentages of uncertainty then Equation 5 is required.  
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Fig 29. Comparison of Kcon and Kequal% Effects. 

 

Flow meter end users usually talk in terms of percentage, and hence should use equation 5 to 
predict the constant K-factor. The authors understand that most use Equation 4. With real flow 
meters the maximum and minimum K-factors are so close that the difference in Kcon and Kequal% 
is very small and the issue goes largely unnoticed. However, technically the common procedure 
of using Equation 4 to produce a value that will give equal ±x% result is ever so slightly wrong.  
 

4.g An Honorary Mention – A DP Meter Curve Fit is Fixed to a Precise Flow Meters Geometry 
 

A DP flow meter calibration curve fit corresponds to the precise meter geometry used in the 
calibration calculation that predicts the meter factor (i.e. discharge coefficient). When entering 
the curve fit and geometry into the computer, if even a slightly different geometry is used then 
the curve fit is not valid. This may sound obvious and trivial, but this happens more than one 
may think, and is mentioned here on the request of an operator that had a real problem due to 
this. The operator is undisclosed, and the following example using a real cone meter calibration 
data set has nothing to do with the real incident.  
 

   
Fig 30. Dermaga 20” Cone Meter at CEESI Iowa.           Fig 31. 20” Cone Calibration Data.  
 

Consider a 20”, sch 40, 0.6289β cone meter (seen under calibration at CEESI Iowa in Fig 30). 
The inlet diameter was 18.793” and the cone diameter was 14.612”. Fig 31 shows the calibration 
data (that was to be linearized by piece wise linear interpolation). When entering the cone meter 
data into a flow computer the inlet (D) and cone diameters (dc) are required. The cone diameter 
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is 14.612”. What would happen if by accident, laziness, or design the cone diameter entered into 
the flow computer was rounded up to 14.6”? This is only a cone diameter change of -0.08%. It 
doesn’t sound like that should matter that much? It actually changes the beta (see equation 6) by 
+0.125%, which in turn causes a step change in the beta dependent geometry terms in the DP 
meter flow rate calculation (see bracketed term in equation 7) of +0.298%.   
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If the cone diameter entered into the calibration data Cd calculation was also rounded up to 14.6” 
then the resulting bias would be automatically accounted for in the corresponding Cd values. But 
that is not what usually happens in practice. The calibration facilities virtually always use the 
precise geometry. If when configuring the flow computer the cone diameter gets rounded off 
then the calibration curve fit will not correct for this induced geometry bias. In this example, a 
+0.298% bias on this 20” cone meter when operating at 70 Bar and 329.7 MMSCFD, i.e. a 
Reynolds number of 17.1e6, is a bias of approximately +$803K per annum.   
 

When configuring a flow computer it imperative to enter the precise geometry values to the same 
significant figures as was used when calibrating and linearizing the meter. Otherwise the 
calibration data fit may not be valid and significant flow rate prediction biases can be induced.  
The authors are unaware of any guidelines explicitly stating this should be checked.  
 

4.h  Batch Calibrations and the Inconvenience and Impracticality of Individual Curve Fitting 
 

In 2016 CEESI calibrated a batch of forty DP Diagnostics 2”, 0.45β cone meters. The meters 
were nominally identical, i.e. manufactured from the same drawing, but in accordance with ISO 
5167-5, were to be individually calibrated. ISO predicted that uncalibrated cone meters should 
have a performance of Cd = 0.82 ±5% to 95% confidence. When calibrated they should 
individually have a curve fit that has a ≤ 0.5% uncertainty. Other than stating the cone meter 
should be calibrated to Reynolds number ISO 5167-5 does not state what curve fit should be 
used. Fig 32 shows one of the meters at CEESI during set up.  
 

Fig 33 shows the massed calibration results. There are three out of forty meters with results 
obviously outside the ISO prediction limits. There are a few meters around the limits, but when 
accounting for the uncertainty of the reference flow these are within the ISO prediction.  That is, 
92.5% of the meters had average discharge coefficients within the ISO prediction. However, ISO 
also stated “… a simultaneous use of extreme values for D, β, and ReD shall be avoided as otherwise the 
uncertainties might increase”. These 2”, 0.45β cone meters have extreme limits of both diameter 
and beta. Hence, this result generally supports the predictions of ISO 5167-5 for uncalibrated 
cone meters. In the interest of an independent check on the ISO cone meter statements CEESI 
chose to curve fit each meter. All forty cone meters had individual curve fits that predicted the 
discharge coefficient < 0.5% at 95% confidence. This is one of the first independent checks on 
the new ISO 5167-5 cone meter standard.  
  

Calibration facilities tend to only produce the calibration data. They are not liable for choosing 
any particular linearization method. That is the responsibility of the client. The client may 
instruct the calibration facility to apply a particular curve fit, e.g. piece wise linear interpolation  
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Fig 32.One of a Batch of Forty 2”, 0.45β Cone Meters at CEESI 

 

 
Fig 33. Forty 2”, 0.45β Cone Meter Calibration Results at CEESI. 

 

in the case of many ultrasonic meters, but the responsibility for the choice is with the client. This 
was the case with these forty cone meters. Whereas CEESI analysis showed that ten data sets 
could be fitted to a constant discharge coefficient, seventeen to a linear line, four to a second 
order polynomial, and nine needed a 3rd order polynomial, the client did not wish to use any such 
fits. (No other curve fits were tested, although other forms would work for individual cases.)  
 

If such individual curve fits were to be chosen, the practical reality is it is time consuming to data 
fit each meter and then double check the quality of that fit. It is also time consuming monotonous 
detailed work to program each individual fit into each computer. It is not an attractive option to 
meter manufacturers making meters on mass. Furthermore, not all computers have software that 
can take different curve fits. A programmable flow computer would be required. In this case the 
end user did not want the linearization done in a mainframe computer but in flow computers. The 
flow computer the client had chosen only allowed piece wise linear interpolation. So in practical 
this was the only choice.  
 

Two of the authors have historically had reservations regarding the piece wise linear 
interpolation methodology. It is a rudimentary ‘curve fit’, if indeed it can be called a curve at all. 
It is a mindless procedure that can be argued to only superficially suggest no associated 
prediction error, i.e. by definition R2 is one and the meter factor prediction uncertainty looks like 
zero percent. There is in reality the hidden uncertainty that occurs on interpolation. However, 
when considering the pros and cons of other linearization techniques above the authors have 
come around to accepting that there are some strong arguments for piece wise linear 
interpolation.  
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5. Piece Wise Linear Interpolation  
 

“When you have them by the balls their hearts and minds will follow”  
Theodore Roosevelt, President of the United States 1901-09. 
 

For meters using flow computers it is rather difficult to argue against piece wise linear 
interpolation (otherwise known as ‘using a look up table’), when virtually all flow computer 
products only offer this methodology. Any other choice requires significant effort, first in curve 
fitting the data, and then programming the flow computer. Such effort would have to offer clear 
practical advantages. And it is arguable that it does not. 
 

This issue is an example of the largely unspoken, inherent, innate power held by flow meter 
computer supply companies. Whether it is flow computer companies, or meter manufacturers 
with embedded processors, the software they choose to add or not add dictates what linearization 
techniques (and other calculations) industry can and cannot practically apply. In this respect 
these computer suppliers and not the end users dictate how meters will be linearized. As such, 
unless these computer suppliers can be persuaded to add other linearization options, or the end 
user is willing to spend time entering linearization code into programmable computers, the 
argument on which linearization method is best is a moot point. Most end users are ‘stuck’ with 
piece wise linear interpolation. And with no choice many do not concern themselves greatly with 
the validity or invalidity of using that method. That is what is on offer, it is what most others do, 
nobody is going to get fired for following the crowd, it is one less thing to worry about. And 
indeed there is a lot going for piece wise linear interpolation.  
 

 
Fig 34. AGA 9 Ed 1 Hypothetical Data With Piece Wise Linear Interpolation Curve Fit. 

 

Consider Fig 18. The data is shown to be difficult to fit with simple curve fit techniques. A lot of 
work may be needed to satisfactorily curve fit any flow meter data set. Fig 34 shows the same 
data fitted to piece wise linear interpolation. This method easily fits the data, and should fit any 
data set, and no great effort is required for it to do so. This means its use alleviates any 
requirement for individual bespoke flow curve fitting analysis.  
 

Many linearization techniques such as a constant meter factor, linear, or polynomial curve fits 
have some tendency to focus on a central trend and ignore the details of variations around that 
trend. Such variations are not always ‘bad points’, i.e. poor data, but can be indications of some 
underlying physical phenomenon occurring in that flow region. They are ignored or played down 
to the detriment of the quality of the flow meter linearization. In the words of the renowned 
scientist Stephen Jay Gould: “Our culture encodes a strong bias either to neglect or ignore 
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variation. We tend to focus instead on measures of central tendency, and as a result we make 
some terrible mistakes, often with considerable practical import”. Such can be the case with flow 
meter calibration curve fits. But not so much when using piece wise linear interpolation.  
 

The authors are not certain of the origins of the trend towards piece wise linear interpolation. It is  
suspected that it was at least in part due to convenience rather than any detailed technical 
considerations. Regardless, whether it was by design or chance, this linearization technique has 
some significant benefits (with a few arguable disadvantages). Advantages of piece wise linear 
interpolation include: 
 

1) Avoiding the possibility that no curve fit is found that is simple and satisfactory (see     
Section 4b).  
 

2) Avoiding the engineering time required for individual meter curve fitting analysis and 
programming a computer with that unique fit. There is a guarantee that this method will work on 
virtually any data set with low scatter on each repeat data point (see Section 4h). 
 

3) Avoid having to choose between R2 vs. lowest overall x% uncertainty (see Section 4c). The 
method produces both at the same time, i.e. the ‘perfect’ R2=1 and x% = 0%.  
 

4) There is no concern about more data in the sweet spot skewing the result, across a set range 
this method is immune to this issue (see Section 4d).  
 

5) This method at least guarantees the correct results at the calibration data points. That is, unlike 
other curve fits there is no residual bias in the prediction of the meter factor at the calibration 
points (see Section 4e.2). The buyer and seller do not have to deal with a bias, i.e. one does not 
have to be complicit on the curve fit choice. This method only produces the more palatable 
uncertainty.  

 

There are a few arguable disadvantages to piece wise linear interpolation. Regarding point three 
above, the R2=1 and 0% uncertainty result is an intrinsic inevitable consequence of how the fit 
relates to the known calibration data points. It gives an illusion of perfection. It is of course only 
an illusion. There is the flow lab uncertainty, the repeatability uncertainty, and like all curve 
fitting the interpolation between points is an educated guess with an associated guesstimated 
uncertainty. There is a tendency to use this technique and then falsely imply there is no 
associated data fit uncertainty. For example, the ISO 17089 Ed 1 Section 7.7 uncertainty 
calculation suggests “calibration curve correction ‘on’: 0%” curve fit uncertainty. AGA 9 3rd Ed 
Table A.5 also implies this. However, it is an absurdity to imply any curve fit is infallible.       
Fig 34 shows hypothetical extra data taken between the original calibration points. Such points 
have virtually no chance of falling on the linear lines connecting the original data, i.e. there will 
be some unknown bias, i.e. additional uncertainty. It is for the experienced flow metering 
pragmatist to estimate just what amount of uncertainty should be expected.  
 

 
Fig 35. Sketch Showing Differences Between Curve Fit and Linear Interpolation Predictions. 
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Another potential disadvantage to piece wise linear interpolation is that it could be argued that a 
linear line between any two calibration points is less likely to be as realistic as a natural curve 
being traced out between a group of points showing a general trend. Fig 35 shows this. However, 
the difference is typically small, more so with calibrations with many equally spaced points, 
although they are both still educated guesses.   
 

The flow meter standards do not tend to dictate which linearization method is used, and the 
authors do not know of any formal text commonly used that discusses detailed pros and cons of 
different linearization methods. However, piece wise linear interpolation does seem to be the 
dominant method used. Most flow computers have this as the only option. Most ultrasonic meter 
manufacturers tend to use this method. From the authors limited knowledge some contracts 
imply that this linearization method should be used, although it appears to be due to habit and 
practical ease of use rather than any scientific preference.  
 

        
 Fig 36. 10” Venturi Meter Under Calibration            Fig 37. 10” Venturi Meter Calibration Fit 
 

As way of example, consider a 10”, 0.4β Venturi meter calibrated at GLIS (as shown in Fig 36). 
Fig 37 shows the resulting data. One of the authors witnessed this test and considered a linear fit 
suitable, giving a ±0.15% Cd prediction over the 12:1 turndown tested. However, the meter 
manufacturer, skid contractor, and end user all insisted that a ‘look up table’, i.e. piece wise 
linear interpolation, would be used. The reason was that the contract ‘sort of’ stipulated it. The 
contract stated that the calibration data must be entered into the flow computer. As the only 
option for that flow computer was to fill in the look up table with the calibration data the contract 
was in effect implying (if not explicitly stating) that piece wise linear interpolation was to be 
used. As far as the authors are aware it wasn’t a statement due to well thought out technical 
reasons, but rather it was solely due to the practical ease of implementation. But from a technical 
stance, this does indeed appear to be a defensible linearization choice.  
 

6. Conclusions  
 

“The only certainty is that nothing is certain” – Pliny the Elder, Roman Scholar (23-79 CE) 
 

The integrity of a flow meter’s linearization technique is a critical part of any flow meter’s 
uncertainty calculation. Lax attention to the details of a linearization technique undermines the 
integrity of a flow meter’s claimed performance. Surprisingly, for all its importance, flow meter 
linearization is not discussed in much detail, not comprehensively regulated, and not always 
required to be fully transparent. One important issue is the correlating parameter being chosen. 
Another important issue is that although the choice of flow meter linearization technique may 
superficially appear to be objective, in reality it can be rather subjective.  



30 
 

Different linearization techniques can be chosen that subtly modify flow meter output without 
necessarily violating any contract, standard, or accepted norm. If linearization techniques are not 
fully disclosed then in reality the end user does not know the true flow rate prediction uncertainty 
of that meter across its flow range. This is a particular concern with the modern trend for flow 
metering systems to be supplied as a complete package, meter, sensors, and computer inclusive 
as embedded parts. Whereas such systems offer many advantages, not least the plug and play 
ease of use, they also tend to have embedded processors. These can have inaccessible, un-
auditable code that could carry out extra undisclosed linearization techniques. Such lack of rules 
or transparency can give any such metering system manufacturer wiggle room to make a 
surreptitious ‘correction’ on a problematic meter. In effect the lack of required transparency can 
potentially be a ‘get out of jail free card’ for the manufacturers. In such a scenario the end user or 
auditor do not have a full understanding of what linearization techniques are applied and why, 
and what the ramifications of these techniques may be. Exasperating this issue is unlike stand-
alone flow computer products (which have API 21.1) such metering systems have no guidelines 
dictating what linearization and audit information they must supply. Most modern flow metering 
system packages have very poor audit reporting capabilities. They do not necessarily disclose all 
linearization techniques applied. Although such modern metering systems are of great benefit to 
industry part of the maturing process should surely be some regulation, or at least end user 
stipulated greater transparency, on the full suite of linearization techniques employed.  
 

Transparency is much less of a concern when the meter linearization techniques are carried out 
in the end user’s mainframe computer or in a reputable stand-alone flow computer product. 
However, even here, various linearization techniques programmed into these computers can have 
various veiled issues. Such issues tend to be out of sight and out of mind in an industry that does 
not much monitor or strongly regulate linearization techniques. Thankfully by design, or rather 
fortuitously (if you don’t believe it was by design), most flow computers default to using piece 
wise linear interpolation as the linearization technique. Although superficially unsophisticated, 
closer inspection of this technique highlights several technical and commercial advantages over 
more complex curve fitting techniques. Nevertheless, as with flow metering system packages, it 
would be to industries advantage if more attention was paid to the pros and cons of linearization 
techniques available in flow computers. 
 

Finally, the authors suggest that flow meter linearization is important enough that it should have 
some reputable guideline, technical report, or standard. Failing that, industry should at least be 
more aware of these issues and require linearization techniques are made more transparent.  
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