

Maria to Kristin allocation from project to operation, a real life experience

NFOGM Hydrocarbon Management Workshop 2018, June 7th 2018

Anita Johnsen, Wintershall Arne Morten Dahl, Equinor

Agenda

- The Maria field
- Agreements
- Metering
- Allocation
- Value adjustment
- Lessons learnt

Overview Maria

Concept

- December 2017
 - Poor reading from topside MPFM
 - Validation planned to January 2018
 - PVT data from design basis used as starting point
 - Maria MPFM measurements will be corrected once validation and PVT lab analysis are completed
 - Subsequently reallocation will be perfored
- Calibration / tuning on topside meters January 16th
 - Results used in prelim allocation from December 2017 until April 2018
- Calibration done in February not valid
- Verification / tuning in March and April not performed
 - Waiting for H-2
 - Asfaltene cleaning
 - Gas lift started in April
- Verification / tuning on topside meters May 2nd
 - Results will be used in allocation for May 2018 and forward until new verification

Agreements

- Allocation appendix Maria-HWU (Kristin) for product allocation
 - Allocation of gas, liquid, fuel and flare
- Allocation appendix Maria-Åsgard B for gas lift
 - Agreement for fuel allocation for injection compressor
- Allocation appendix Maria-Heidrun for water injection
 - Agreement for tariff purposes
- Allocation appendix Maria-Tyrihans for use of Tyrihans pipeline
 - Tyrihans owner of pipeline from topside to connection Maria pipeline

wintershall

Metering

MPFM= Multiphase flow metering SPFM= Single phase flow metering

Metering concept

- Multiphase metering on Maria
 - One 10 inch meter installed in flowline topside Kristin platform
 - Each producing well installed with subsea multiphase meter in FCM
 - Topside meter as primary meter and subsea as secondary meters
- Validation against test separator
 - Test separator installed with flow metering on all 3 phases from separator
 - Water metering
 - Recertified flow meter
 - Upgraded gas metering from v-cone to USM
 - Single ultrasonic flow meter
 - New gas density cabinet
 - Condensate metering
 - Recertified ultrasonic flow meter
 - New fast loop sampling cabinet (incl. density and water cut)

Operational experience after startup

- Ultrasonic flow metering on oil outlet
 - Experienced drop out of signals from USM at both from 1. stage separator and test separator.
 - Flashing of gas in the oil
 - At 1st stage separator the oil reference meter are changed from ultrasonic meter to a turbine meter
 - No loss of signal from this meter but there are still the same situation related to flashing of gas
- Drop out may be related to slugging

Operational experience after startup

- Gas density cabinets
 - Same type of cabinets at test separator and 1st stage separator
 - Cabinets have a cold and a hot part
 - Electronics installed in cold part and tubing for gas in hot part to avoid condensing of gas
 - Issue with temperature reading results in manual sampling for determination of density
- Condensate density cabinets
 - Instability in temperature readings
 - Due to design/configuration
 - Resulting in unstable density reading
- Independent evaluation of density cabinets gas and condensate
 - Several points that should be modified

Allocation and value adjustment

- Development of allocation method and value adjustment
- Starting point
 - Metering and sampling modifications at Kristin SEMI platform
 - Allocation principles from preliminary allocation appendix
 - RNB production forecasts for Kristin and Tyrihans
 - Design Basis for Maria production
 - Existing Åsgard Area crude oil value adjustment system

wintershall

Allocation model

Development of allocation method

- Updated Kristin process model implemented in Unisim
 - Basis profiles for existing fields with known well stream composition and PVT data
 - Maria profiles from preliminary prognosis and available PVT data
- Production over Kristin facilities
 - All 3 fields with different products and difference in GOR
 - Commingling effects must be expected

Cases simulated for evaluation of allocation

Case	Field	Routing/Allocation 1st Stage Separator 1st Stage Separator						
1	Kristin/HWU - Stand alone							
2	Tyrihans - Stand alone							
3	Maria - Stand alone	1 st Stage Separator						
4 A	All in	Kristin/HWU to Test Separator,						
	All in	Tyrihans + Maria to 1 st Stage Separator						
5	Maria dia fi DAGLE. Tanti anno	Kristin/HWU to Test Separator,						
	Kristin/HWU + Tyrihans	Tyrihans to 1 st Stage Separator						
6 C		Kristin/HWU + Tyrihans to 1 st Stage Separator,						
	All in	Transmitter Tymans to T Stage Separator,						
		Maria to Test Separator						

Cases used in further evaluation of allocation methods

Agreed allocation principle

- Kristin to be allocated gas and liquid based on theoretical production
 - Well performance curves based on testing over test separator
- Tyrihans allocated gas and liquid based on metered hydrocarbon production from multiphase meters
 - Testing against 1. stage separator
 - 1. stage separator equipped with flow metering and sampling based on fiscal design
- Maria allocated gas and liquid based on metered hydrocarbon production from multiphase meters
 - Testing against test separator
 - Test equipped with flow metering and sampling based on fiscal design
- Commingling effects
 - Strong effects between Tyrihans and Maria
 - Some effects between Kristin and Tyrihans
 - Agreed between parties
 - Kristin liquid shall be held harmless

wintershall

Agreed allocation principle

- Final agreed liquid
 - Condensate determined by ORF (oil recovery factor) per component where ORF per component determined by stand alone simulation
 - Stand alone means as if one field is the only producer over facility
 - Using topside conditions as if all fields were producing
 - Maria and Tyrihans fields to take share of difference in condensate production

Final agreed gas

- Produced gas from field as difference between produced hydrocarbons and allocated condensate deducted allocated gas lift
- All fields to take share of difference in gas production
- Final allocated produced gas to fields are prorated between fields based on allocated produced gas

wintershall

Agreed allocation principle

- Fuel and Flare
 - Attributable fuel and flare per component allocated to the field responsible
 - Remaining total fuel and flare determined and prorated between fields
 - Remaining fuel and flare for liquid handling
 - Initially 20% of fuel and flare
 - Allocated pro rata based on allocated condensate production per component
 - Remaining fuel and flare for gas processing
 - Initially 80% of fuel and flare
 - Allocated pro rata based on allocated gas production per component

wintershall

Agreed allocation principle

- Final allocated export gas
 - Allocated produced gas from fields deducted allocated fuel and flare to fields
- Commercial
 - Gas Lift to Maria field shall be redelivered to Asgard B
 - Redelivery of fuel gas to Åsgard B due to Gas Lift to Maria
 - Deferral compensations for gas and condensate included in allocation procedure
 - For Maria includes deferral to Asgard B, Kristin and Tyrihans
 - Redelivery and deferral compensation of gas performed in-kind on energy basis
 - Separate accounting system

Plan for development of allocation method

Year	2016									2017								
Month	Α	М	J	J	Α	S	0	N	D	J	F	M	Α	М	J	J	Α	
Process simulations																		
Establish simulation model																		
Simulation work																		
Internal review	*																	
Status meeting WINO		*																
		11.05																
Allocation modelling work																		
Develop allocation principle																		
Presenting allocation model to stakeholder	s																	
Acceptance process																		
Energy Components model devel	opm	ent																
Defining all data input and algorithms																		
Programming and development of test																		
program for verification of EC calculations								'										
Final testing of EC and development of														'			1	
shipment and allocation														'	'	<u> </u>		
														<u> </u>	<u> </u>	<u> </u>	$oxed{oxed}$	
Appendix C development																		
Draft appendix C																		
Final appendix C																		
Appendix C partner review																		
Appendix finalized and signed													7	<u> </u>				

wintershall

Agreed allocation principle

- Plan for development indicated first draft from operator for allocation agreement 1 year before planned start-up 1st of May 2018
 - First draft ready as planned
- Official expected startup date moved from 1st of May 2018 to 1st December 2017
- Several meetings between Operator and Kristin/Maria owners before final agreements signed short before start up in December 2017

wintershall

Agreed allocation principle

Fields contribution to Åsgard Blend

wintershall

Crude Oil Value adjustment

Åsgard Blend

- The need for value adjustment occurs when oil streams with different qualities are mixed together in one blend – Åsgard Blend
- Sampling, determination of quality and use of Platts prices used to calculate the product value of the different streams and Åsgard Blend
- If the contributing stream leads to an increase or decrease compared to the Åsgard Blend an adjustment of volume entitlement is done
- Maria value adjustment implemented in the existing Åsgard Area value adjustment system

Lessons learnt

- Close collaboration in entire value chain important
 - Project organization Commercial Stakeholders Operations, etc.
- Complexity in agreements
 - Considerable commercial aspects to be included in allocation and reporting
 - Delayed process for agreeing on final allocation appendix, completing the detailed document is work intensive
 - Understanding of how the agreements content impact daily operation, and how to act accordingly
- Overview of sampling and analysis needs important for preparations and planning in operations
- Close follow-up of implementation of the agreed allocation procedure in operational phase important