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Abstract

The paper presents analysis of extensive measurements taken at NEL, K-Lab and
CEESI wet gas test loops. Differential and absolute pressure signals were sampled at
high frequency across V-Cone meters.  Turbulence characteristics of the flow
captured in the sampled signals were characterized by pattern recognition techniques
and related to the fractions and flow rates of individual phases. The sensitivity of
over-reading to first and higher order features of the high frequency signals were
investigated qualitatively. The sensitivities were quantified by means of the saliency
test based on back propagating neural nets.  A self contained wet gas meter  based on
neural net characterization of first and higher order features of the pressure,
differential pressure and capacitance signals was proposed. Alternatively, a wet gas
meter based on a neural net model of just pressure sensor inputs (based on currently
available data) and liquid Froude number was shown to offer an accuracy of under 5%
if the Froude number could be estimated with 25% accuracy.

Introduction

Wet gas measurements were conducted under a wide range of conditions with a V-
cone meter in the test loops at NEL, K-Lab and CEESI. Measurements, comprising
high frequency signals from pressure and differential pressure sensors,  were analysed
by characterisation of the turbulence properties of the flow by means of a pattern
recognition / neural net methodology described in previous publications [1,2]
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Figure 1. Schematic Diagram of V-Cone
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The V-cone was connected to high frequency absolute and differential pressure
gauges and a portable PC as the data acquisition system. The signals were sampled
and analysed by extracting characteristic features from fluctuating differential and
pressure signals sampled at high frequencies. Examples of such features can be given
as standard deviation in the amplitude domain and linear prediction coefficients in the
frequency domain. The efficiency of the features for discriminating between different
flow conditions is assessed by means of the Saliency test. The features were then
related to the superficial velocities of individual phases by means of a back-
propagating neural net.  A data flow diagram of  the concept is shown in figure below.
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Figure 2. Schematic diagram of the ESMER concept

Test matrices covered a range of flow conditions up to 15% liquid volume fraction,
operating pressure up to 90 bar; gas actual volumetric flow of 1000 m3/hr. Kerosene,
condensate, field gas and nitrogen was used in different labs in 4” and 6” lines. The
chart below gives a graphic summary of the flow conditions.
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Figure 3. Operating envelope of NEL, K-lab and CEESI test data
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Qualitative Analysis

We have started the analysis with the conventional overreading graph. Briefly, this
graph shows the effect of the liquid fraction on the differential pressure measured
across the V-Cone. The liquid fraction is quantified by means of the Lockhart
Martinelli number as the ratio of liquid momentum to gas momentum  expressed as:
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and the differential pressure across the V-cone is non-dimensionalised with the
theoretical dry gas differential pressure expressed as:
Over-reading = gpp ∆∆ /
where :

gp∆ = theoretical differential pressure across the V-cone calculated from the standard
V-cone equation based on (reference) superficial gas velocity [3]

Overreading is partly due to the presence of the liquid phase (greater mixture density
than that assumed by the application of the dry gas equation) and partly due to greater
frictional losses in the throat of the V-Cone as a result of interfacial interactions
between the segregated phases as explained long ago by Lockhart Martinelli [4]

The pressure drop in the two phase flow is greater than that for the flow of either
single phase alone for various reasons, among which are the irreversible work done
by the gas on the liquid and the fact that the presence of the second fluid reduces the
cross sectional area of flow for the first fluid.  Thus during two-phase flow the
hydraulic diameters Dl and Dg are always less than the pipe diameter Dp as noted in
the Fanning equations , this reduction of hydraulic diameter will increase the
pressure drop greatly.

The overreading graph shows a wide scatter when all data points are included for
measurements taken in all laboratories. For example, figure 4a shows the overreading
graph for NEL and figure 4b shows the overreading graph for K-Labs.
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Figure 4 a.Overreading graph for data collected at NEL
KLab All Points
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Figure 4 b.Overreading graph for data collected at K-Labs

We have considered a number of possible reasons for the scatter on these graphs
including:

- variation in the physical properties
- variation in the density of fluids
- flow regime effects
- experimental error
-

As the physical properties of the fluids are constant at each laboratory, variation in the
physical properties can be ruled out as an explanation of the scatter.
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Density variations were considered next. As the tests were carried out with the same
liquid in each series of tests, we only had to consider the effect of variation in the
density of the gas. We have used pressure as a surrogate for examining this effect.
Figure 5a for NEL and figure 5b for K-labs shows that density / pressure has a
definite effect on the scatter.
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Figure 5 a.Overreading graph for data collected at NEL at different pressures

KLab by Pressure
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Figure 5 b.Overreading graph for data collected at K-Labs at different pressures

 It is seen that overreading increases with decreasing pressure (ie gas density) at the
same Lockhart Martinelli number. This can be explained as greater turbulence, and

133



hence greater interfacial frictional losses arising from the commingled flow of phases
of larger density difference.

We have next examined the flow regime effect in further depth. The flow regime
effect is of course already taken into account by the Lockhart Martinelli number as a
first order effect. The ratio of liquid to gas momentum will exert a decisive effect on
the flow regime.  The density effect mentioned above can also be considered as a
second order flow regime effect.

However, there is another factor at work in establishing the finer characteristics of the
flow regime at a given Lockhart Martinelli number and pressure (gas density). This is
the ratio of the axial momentum (of the liquid or the gas phase) to gravitational force
arising from the difference in density of gas and liquid phases. The Froude number
provides the mathematical expression to this ratio. Figures 6a for NEL and figure 6b
for K-Labs shows the scatter caused by the variation in Froude number within given
Lockhart Martinelli bands. The overreading increases with increasing Froude number
because of greater turbulence effects giving rise to larger frictional pressure loss. As
expected the Froude number effect was observed to diminish with increasing pressure.

NEL By Gas Froude Number at 15 bar
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Figure 6 a.Overreading graph for data collected at NEL at different Froude
number
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KLab By Gas Froude Number at 89 bar
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Figure 6 b.Overreading graph for data collected at K-Labs at different Froude
number

The importance of the Froude number was highlighted when comparing the results
from two labs at the same Froude number. For example, figure 7a, shows two sets of
data drawn from NEL at different Froude numbers. As normal, the overreading
increases with Froude number. However, the graph of overreading drawn from K-
Labs measurements coincide with that from NEL at the same Froude number. This
finding confirms the importance of Froude number as a first order effect and also
indicates that experimental error is of lesser importance as an explanation of scatter.

KLab vs NEL - same density/gas Froude no
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Figure 7 a.Overreading graph for data collected at K-Labs and NEL at same
Froude number
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The same observation is repeated in figure 7b which shows  two sets of data drawn
from CEESI at different Froude number against one data set drawn from K-labs at the
same Froude number as one of the CEESI data sets.  Once again the graphs of
overreading at same Froude number coincide irrespective of where the data is coming
from.

KLab vs CEESI - same density/gas Froude no
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Figure 7 b.Overreading graph for data collected at K-Labs and CEESI at same
Froude number
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Quantitative Analysis by Neural Nets

The Froude number effect was noted previously; eg see [3], and no claim is made in
this paper for originality for noting the effect.  However, we believe that the method
outlined next for quantifying this effect in relation with others is original to this paper.

After the qualitative analysis described above, we proceeded to carry out a
quantitative analysis of the sensitivity of over-reading to various parameters. We have
used a back propagating neural net and tried different features, targets and training
data. Two configurations of the neural net are reported here.   For both configurations,
the neural net had eight input nodes and 16 hidden nodes, but different sets of  inputs
(features) and outputs (targets) were tried as follows

Neural Net 1 Features: The following features were used as input variables (codes are
used for reference to figure 9) :

F70:  Liquid Froude Number
X  Lockhart Martinelli parameter
F48:  Gas Froude Number

F53:
g

p
ρ
∆

F43:
m

p
ρ
∆

F37: p∆

F69:
l

p
ρ
∆

Pressure P

Neural Net 1 Targets: Over-reading was used as the training target.

Neural Net 1 Data:  NEL data was used for training and testing. The self test result of
the neural net is shown in figure 8. The deviation between actual and prediction was
0.0013 rms
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Overreading Self Test
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Figure 8 Neural net self test overreading predicted vs overreading actual

We then carried out the saliency test to obtain a quantitative measure of  the
sensitivity of over-reading to the input parameters [4]. The result of the saliency test is
shown on figure 9.
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Figure 9 Saliency test neural net 1 – sensitivity of various parameters on
overrreading

Neural Net 2 Features:

F65 =
P
p∆

F53:
g

p
ρ
∆
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F37: p∆

F70: Liquid Froude Number

F69:
l

p
ρ
∆

Pressure
Density Gas
Density Liquid

Neural Net 2 Targets: Neural net 2 was trained against liquid and gas superficial
velocities (two targets).

Neural Net 2 Data: Self test and cross test results for this neural net with two sets of
NEL data obtained at different times (May 03 and March 05)  is shown below:

Gas Flow Rate Measurement Error
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Figure 10 Error in prediction of the gas flow rate with neural net 2 – cross test

The neural net was trained with data gathered in March 05 and back tested against
data gathered in May 03.  The gas superficial velocity was predicted with an accuracy
of rms 1.51  and liquid superficial velocity was predicted with an accuracy of rms
13.74.

The sensitivity of the predictions to input features are shown in figure 11.
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Figure 11 Saliency test neural net 1 – sensitivity of various parameters on liquid
and gas superficial velocity prediction
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Wet Gas Flow Meter

The brief of an in-line wet gas flow meter is to measure liquid and gas flow rates
simultaneously. This requires two measurements (equations) responding in two
different ways to the flow rate of liquid and gas flow rate  (to solve for two
unknowns). One of these measurements (equations) is the mean differential pressure
across the V-Cone (Bernoulli equation - momentum balance with appropriate
compensation for additional frictional pressure loss arising from interfacial
interaction).  Another equation can be obtained either from pressure recovery
downstream of the V-Cone or from another V-Cone with a different beta ratio. These
ideas have been tried before with varying degrees of success.

Another possibility is to extract some features from the differential pressure sampled
at a high frequency which respond to the liquid fraction or to the change in liquid and
gas flow rates differently.  That is, to derive two simultaneous equations from the
same measurement.  This was tried in the present study.  To see how features vary
differently to liquid and gas rates we have plotted contour maps of features extracted
from the differential pressure signal.

When contours of features are plotted on superficial velocity coordinates one must
obtain "intersection" between different feature surfaces (for a solution to the
equations) For example, it is not enough to have contours which are laid out
diagonally (eg mean DP, standard deviation are typical examples of diagonal contours
which do not intersect). Depending on the angle of the diagonal, intersection is still
possible (eg variation of mean DP with liquid and gas flow rates is concave but
variation of higher order amplitude domain features such as standard deviation,
coefficient of kurtosis are convex); but the sharper the angle the better chance for
intersection (ie angle =0 -> horizontal contours; angle = 90 vertical contours;
 angle=45 diagonals).

Figure 12 shows some of the amplitude domain features extracted from the
differential pressure signal. These features were extracted from tests conducted at
NEL in May 03.
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Figure 12  Differential pressure second order features amplitude domain as contour
maps on liquid / gas flow rate coordinates.

We have found that while multiple features from the differential pressure provide the
intersection points required for identifying liquid and gas rates simultaneously in a given
pipeline (or flow loop), for generalization of this method, a stronger (reproducible) imprint
of the flow characteristics is necessary. For this it is necessary to add features extracted
from another sensor which responds directly to the presence of the liquid phase. For
example features extracted from a capacitance sensor in figure 13 show that the
capacitance feature surface will intersect with the differential pressure features (eg mean
DP rising towards North East, whereas mean capacitance rising towards North West, etc –
one can see similar reverse trends in a number of other stochastic features extracted from
the respective signals). The measurements shown in figure 13 were made in NEL
multiphase flow loop in 1999 – NEL Multiflow JIP [5]
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Figure 13  Capacitance sensor second order features amplitude domain as contour
maps on liquid / gas flow rate coordinates.

Thus a combination of DP and capacitance sensors will result in a metering system with a
greatly enhanced capability for the identification of liquid and gas rates.  It can be seen
from the trends in contour maps that input-output relations are non-linear and multi-
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parameter (eg mean capacitance is not just affected by water composition but also by flow
regimes which are in turn affected by superficial velocities and density difference, etc).
We believe that only a neural net is capable of finding the relationship between the
complex set of causes and effects in multiphase flow.

Finally, we believe that there are still many advantages to the conventional overreading
correction approach coupled with a neural net method for correlation of the experimental
database. This method of course requires an independent measurement of the Froude
number (see Neural Net 2 above). However, an estimate of the liquid Froude number can
still result in a relatively good measurement  (it is not in the brief of this paper to suggest
how this estimate can be made, but a number of options are available including tracers,
equation of state, production separator, etc). For example, we have tested the neural net
(cross test with erroneous Froude numbers and obtained the result shown in figure 14.  It
is seen that the rms error in gas prediction is rms 1.51 when the neural net is tested with
the correct Froude number. The error goes up to rms 9.13 when Froude number is out by
50% ie when (FrEstimated – FrActual)/FrActual x 100 =50% (figure 14a).
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Figure 14a Error in gas rate prediction versus error in liquid Froude number
(Neural Net 2)

An interesting byproduct of this investigation was the finding shown in figure 14b that the
prediction made by the neural net for the liquid rate is actually better than the input value
for Froude number error greater than 20% (Note that this neural net has two targets and
the liquid rate is used both as an input feature – via liquid Froude number- and as an
output target.)

144



0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

Error in Liquid Froude Number  %

Li
qu

id
 F

lo
w

 R
at

e 
P

re
di

ct
io

n 
R

M
S 

Er
ro

r

Figure 14b Error in liquid rate prediction versus error in liquid Froude number
(Neural Net 2)

Conclusions

1. Back propagating neural nets present a powerful tool for investigating cause and
effect relations in wet gas.  The effect of Froude number on overreading ratio was
quantified by analyzing measurements conducted with V-cones under a wide range of
conditions at different laboratories.

2. Back propagating neural nets can also be used as kernel software in a self contained
wet gas flow metering system. If the wet gas meter comprises just a V-Cone coupled
with a differential pressure sensor and pressure sensor, the liquid Froude number must
be input explicitly. In this configuration, the neural net can be self-contained (ie can
predict both liquid and gas rates simultaneously) in a given pipeline after suitable
training.

3. A general wet gas metering system (ie simultaneous self-contained measurement of
liquid and gas rates from a factory calibration)  is possible with a combination of
differential pressure and capacitance sensors and a neural net for correlating the
complex causes and effects between hydrodynamics and phase distributions.

4. A general wet gas metering system is also possible with a neural net trained with
features extracted from just the pressure sensors and an external input for liquid
Froude number. The error in the gas rate prediction made by the neural net will be
under 5% for an error in the Froude number of 25%.
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Notation

lρ  = liquid density

gρ  = gas density

gv = superficial gas velocity

gp∆ = theoretical differential pressure across the V-cone calculated from the standard
V-cone equation based on (reference) superficial gas velocity

p∆ = actual differential pressure across the V-cone (measured)

Frl=Liquid Froude Number = Vl /Sqrt(9.81*Diameter)*Sqrt( lρ  /( lρ  - gρ )

FrG = Gas Froude Number =Vg/Sqrt(9.81*Diameter)*Sqrt( gρ /( lρ  - gρ )
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