Technical Paper

Using an Ultrasonic Flowmeter in the Transition Zone

David Mills, Oil & Gas Measurement

Julien Porré, Oil & Gas Measurement

1 INTRODUCTION

The abstract for this paper contained the following statement:-

Liquid flow measurement is essential throughout the oil and gas industry. Ideally a flow measurement system would have high turndown and low measurement uncertainty, maintained over the complete flow range. Unfortunately velocity based meters such as turbine and ultrasonic meters can show significantly degraded linearity at low flows. Provided the measurements are <u>repeatable</u> this non-linearity can be defined and corrections applied in order to maintain a good turndown. If repeatability is not good, the overall <u>uncertainty</u> of measurement will be worse at the low flow end and may not be acceptable. This will result in much higher costs for metering as more meter tubes will be required to cover the overall flow range. These turndown effects become more and more significant as viscosity increases.

OIML R 117 for a class 0.3 meter requires the difference between the largest and smallest results of 3 successive (flow) measurements to be within 0.12% for flow greater than 5 times the minimum specified meter flow.

Flow below this point will typically be approaching the transition zone which is the flow region between turbulent flow (typically Reynold's Number (Re) >4,000 and laminar flow Re< 2,500). Flow in this transition zone is chaotic, where vortex sizes can vary from microscopic to a significant part of the pipe diameter. As they are chaotic in nature they are not evenly distributed across the pipe section and have rotational characteristics differing in magnitude and direction as well as linear velocities along the pipe axis. A turbine meter has mechanical inertia and as it occupies almost the complete cross section of the pipe can "smooth out" these effects, whereas a typical planar chordal liquid ultrasonic flow meter can suffer from degraded repeatability and thus worsened measurement performance. This effect can begin to be seen below Reynold's numbers as high as 10,000 for some USMs and the repeatability spread can be 10 times greater than the OIML requirement of 0.12% when in the transition zone.

The Nyquist sampling theorem states that a sampling rate of twice the highest frequency component enables a complete re-construction of the original signal. This suggests that a high sampling rate in the meter would overcome the problem; however, increasing the sampling rate in a planar chordal meter is likely to "oversample" larger vortices and will not add extra linear velocity information above a certain sample rate as over-sampling in the time domain will not add extra linear velocity information.

Technical Paper

Reproducibility of measurement, not only short term repeatability - three consecutive measurements for example - but long term repeatability – do we achieve the same value the next day, or the next week, or even the next year, given at what we believe to be the same process conditions?

This is fundamental to high quality measurement.

Reynold's number is the dominant factor. As seen above, OIML R117 is effectively silent for low Reynold's number and typically liquid USMs are considered to have worsening repeatability as Re reduces below 10,000.

At very low flow rates flow is laminar with fluid motion being parallel to the pipe walls and with a parabolic flow profile, and at higher flow rates flow is turbulent and with a much flatter flow profile:-

The line drawings above represent ideal cases: in the real world the flow may include swirl or a profile which is not symmetrical about the pipe axis. Crossed, horizontal chordal beams can cope well with swirl, but clearly would not cope well, when for example, the profile "nose" is predominantly below the lowest beam path.

The laminar flow regime typically exists below Re <2,000

At higher flow rates, typically at Re> 4,000 the profile becomes flatter as the flow becomes turbulent. In the region between laminar and turbulent flow the characteristics change rapidly and in a random manner where laminar flow dominates at low Reynold's numbers and turbulent flow dominates at higher Reynold's numbers. This is the transition zone.

Flow in the transition zone was described as *chaotic*. In the English language this usually means *complete disorder and confusion* and in physics to be *the property of a complex* system whose behaviour is so unpredictable as to appear random, owing to great sensitivity to small changes in conditions. Again in the abstract, chaotic flow was described as where vortex sizes can vary from microscopic to a significant part of the pipe diameter. As they are chaotic in nature they are not evenly distributed across the pipe section and have rotational characteristics differing in magnitude and direction as well as linear velocities along the pipe axis.

Technical Paper

A paper presented at the 6th Symposium. Smart Control of Turbulence, Tokyo March 6 to 9, 2005 ^[1] stated *The visualized flow field and the turbulent statistics suggest that the streaky structures......* exist only near the wall, while the large scale structures extend from the centre of the channel to the near wall region. Therefore, the near wall turbulence depends not only of the near wall fine scale structure, but also on the large scale structures.

The image below shows a CFD model of such a flow, where the small structures near the pipe wall can be clearly seen, as can the large scale structures, which are predominantly visible within the central area of the pipe, but can also be seen extending near to the wall of the pipe. This image only shows a 2 dimensional "slice" cut through the centre line of the pipe, whereas the actual structure shapes in the 3 dimensional space would show random variability of cross section and shape in much the same way as those in the 2 dimensional slice. Velocities in those large scale structures will include both angular and axial velocities which will be constantly changing and thus changing the shape of the structure. Total flow momentum will be maintained, but will transfer from structure to structure as they change shape in this chaotic regime.

A transit time USM measures upstream and downstream transit times along the same path and calculates the axial fluid velocity:-

The diagram below shows a single beam. The velocity of fluid can be calculated from:-

$$V = ((t_2 - t_1)/(t_2 * t_1)*(L / 2\cos\theta))$$

Where

- V = fluid velocity
- t_2 = transmission time upstream
- t_1 = transmission time downstream
- L = distance between sensors
- Θ = angle between beam and pipe axis

Technical Paper

USMs used for custody transfer and other "high end" duties have more than one beam, arranged in a variety of different ways, with chordal beams arranged in horizontal planes being the most common. Some meters use dedicated beams arranged to obtain diagnostic data.

A single beam can only provide a *good* measurement when the flow profile is fully developed and there is no swirl at the measurement position.

How many beams, and how should they be arranged to obtain this good measurement?

Let us look at the question in a reverse and consider the computational fluid dynamics problem in reference [1]. This simulation used around 16 billion grid points with calculations being performed using 2048 CPUs with 4TB of memory – and even with all this computing power it did not work in "real time"!

The Earth Simulator computer used for the CFD modelling in reference [1]

This is not a good solution – a flow meter electronics housing 65m x 50m and occupying 2 floors is definitely not practical!

Technical Paper

This is not a reasonable comparison as the problem is different; the CFD simulation is looking at the properties of the individual cells defined by the matrix of those 16 billion grid points and determining the effect of one cell on the adjoining cells whilst maintaining overall momentum of the flowing fluid; the USM is **measuring** time of flight (TOF) along a small number of fixed paths, and is then using these TOF values as the basis for calculating, or rather *estimating*, the flow rate.

The processing power required to simulate flow in this regime is clearly very high indeed, so can we hope to achieve acceptable results by just measuring TOF along these few paths?

What is the optimum arrangement of these beams in order that sufficient information is provided to enable the mean axial velocity, V along the pipe to be determined? Provided V is known, then flowrate is simply:

$V \times A m^3/h$

Where V is in m/s and A, the cross sectional area of the pipe, is in m^2

The CFD simulation does provide useful indicators for the USM; the simulation uses very small grid matrix sizes where flow patterns are complex; the flow simulation in reference [1] is a good example, where a very small mesh size was used close to the wall, and a larger size in the centre of the pipe; around the surface of an aircraft wing is a common example where grid matrices are very detailed around the wing surface, and particularly where flow directions change rapidly and larger, simpler grid matrices where flow patterns are simpler at greater distances from the wing surface – in other words more information equates to a "tighter" matrix.

Technical Paper

A typical 8 beam chordal meter path layout is shown below:

Reference [2] explains clearly that changes between laminar like and turbulent like flow regimes in the transition zone causes non-axial flow components to be developed. The velocity profile thus changes rapidly and prevents good repeatability being achieved. This referenced paper was based on chordal meter designs and notes that "a lower Reynold's number limit of 10,000" is recommended. Although not referenced in [2], but elsewhere in the same manufacturer's literature it is also stated that for the 8 chordal path meter the maximum spread in three repeats below Re = 10,000 is \neq 20,000 x 0. 12/Re.

This is graphically represented below. It should be noted that it shows the repeatability spread acceptance limits, and does not necessarily represent the results which would be obtained in practice.

Technical Paper

The 32 beam layout for DFX meter used for the tests in this paper is shown below:

The 32 beam design gives an axially symmetric layout. This ensures that the meter is installation insensitive to the plane of an upstream bend and the beam coverage provides much enhanced information on the flow profile. See reference [3] for examples.

Given this "enhanced information" can we expect to achieve a high order of repeatability, or will it still require "averaging" over a longer period of time? [cf. turbine meter which "averages" thanks to mechanical inertia and almost full coverage of the pipe cross section]

The tests carried out concentrated on low Reynold's numbers (<10,000). Results have been included for Reynold's numbers >20,000 for comparison purposes when the meter(s) are used well above the transition zone and where flow can be assumed to be well developed turbulent flow.

2 DESCRIPTION OF TESTING CARRIED OUT

Three main groups of test results are included in Appendix A.

Tests 1 and 2 were carried out using M&T DFX liquid USMs. As described above, these meters have 32 beams arranged in an axially symmetric design. Each of the 16 transducer assemblies contains four separate transducers with 2 of the transducers handling the outer ring of 16 beams (shown in red above) and the other 2 transducers handling the inner ring of 16 beams (shown in blue above).

Test 1	<u> 4 inch DFX calibration, NEL, East Kilbride - UKAS 0009</u>
Test 1.1	Velocite with a viscosity of ${\sim}45~cSt$ at ${\sim}12^{o}C$. Reynold's number from ${\sim}1,600$ to 22,000
Test 1.2	Gas oil with a viscosity of 6cSt at 44°C. Reynold's number ${\sim}10,000$ to 163,000

Technical Paper

Test 2 8 inch DFX calibration, IMS Calibration Facility, Belgorod - VSL CMC Certification LF2015.04.0012

These tests were carried out specifically for this presentation using oil with a viscosity of \sim 26 cSt at \sim 25°C. Reynold's number from \sim 2,900 to 26,300

Test 3 <u>16 inch USM (3 off) from A.Nother Company</u>

These calibrations were carried out by ANO Company, using their accredited flow calibration laboratory as part of their "contract to supply and calibrate" 3 off liquid ultrasonic meters to Oil & Gas Systems. The calibration fluid was Drakeol 32 with a viscosity of ~80 cSt at ~ 20° C. Reynold's numbers for ~1,700 to 37,000.

The meters have been installed offshore as 2 off 100% meter tubes, with a "spare" meter on hand to be used when either of the two working meters are sent on-shore for recalibration. Due to the size of the assembled meter/meter run assembly, it was proposed that only the meter should be sent on-shore. Although these meters are described as being very tolerant of upstream flow conditions, bored and axially aligned upstream meter tubes were required by the end customer to confirm that measurement results would be acceptable if only the meter body itself were to be re-calibrated without its installed meter tubes. A pair of upstream and downstream meter tubes manufactured in the same way as the installed meter tubes were retained at the USM suppliers and have been used for all subsequent calibrations.

Test 3 results were extracted from calibration data for 3 off 16 inch liquid USMs supplied to Oil & Gas Systems for a customer contract. Details are given in the test results.

3 DISCUSSION OF TEST RESULTS

Test result data is given in Appendix 1 for reference purposes. All data shown in the figures is taken directly from the calibration results.

Repeatability spread in all cases is simply calculated as:-

(Kfactor max – Kfactor min) x 100% Kfactor min

4 inch 32 beam USM

The volumes used for the 4 inch 32 beam meter were dependent on flow rate and varied from nominally 1.48 m^3 to 12.2 m^3 . These volumes were measured using PD meters as master meters.

8 inch 32 beam USM

As can be seen from the detailed results in Appendix A the bi-directional prover volumes were nominally 3.18m³ for the 8 inch 32 beam meter. This was the complete swept volume for the combined forward and reverse passes of the sphere.

All test sequences were of 4 runs only.

Technical Paper

16 inch 8 beam meters

The low flow tests (~150 m³/h and 450 m³/h) were run with a nominal 10.06 m³ uni-directional prover.

Test sequence run lengths were not consistent, with 20 at 3 runs, 2 at 4 runs, 6 at 5 runs and 1 at 9 runs. It is understood that extra runs were made when the repeatability required by the formal test procedure could not be reached with 3 runs.

All higher flow rate tests used a USM master meter system with measured volumes varying from \sim 21 m³ to \sim 38 m³.

Pulses counted by the master meter obviously corresponded to these volumes and varied from 20,000 to 57,000.

Technical Paper

3.1 Test 1

This 4 inch meter was calibrated on 2 products with different viscosities for use in metering oil flow from an offshore separator where both varying amounts of water and gas slugs occur in practice. This application has previously been discussed in references [3] [4]

Figure 1 shows the repeatability spread for each point in the calibrated flow range.

The volumetric flow rate measurement points go from the laminar flow region, through the transition zone and extend up well into the turbulent flow region. As has been discussed at many conferences, Reynold's number is the key factor in the characterisation of all velocity meters, such as USMs and turbines. In the case of the USM the flow profile, described in various ways including *profile number* and *flatness ratio*, for example, is often used as part of the initial characterisation of a USM before final calibration and this value can be derived from the initial characterisation results.

When examined in volumetric terms, the results for the two products show good correlation, with worst case occurring at $\sim 30m^3/h$, and even there the difference in repeatability spread is only 0.025%.

Technical Paper

<u>Figure 2</u> shows the repeatability spread when plotted against Reynold's number, plotted here, conventionally, on a logarithmic scale.

As mentioned above, since Reynold's number is a key parameter in USM characterisation, the use of 2 calibration fluids of different viscosities is accepted for calibration purposes where the calibration laboratory cannot achieve a high enough volume flow rate on a high viscosity fluid, but can achieve a high enough Reynold's number flow rate by using a lower viscosity fluid. In the case of this testing the two viscosities were used in order that the meter could be used on crude oil and also crude oil with high water content, where the apparent viscosity can rise rapidly as water content rises.

Technical Paper

Figure 3 shows the four calibration points highlighted where the Reynold's numbers overlap.

These points correspond to about 150 m³/h and 250 m³/h for the velocite calibration and 15 m³/h and 30 m³/h for the gasoil calibration. Although outside the main transition zone area of interest for this paper it is a good demonstration that repeatability for this meter was largely independent of viscosity. In practice, good profile number characterisation and modelling would also be required to ensure that volumetric flow calibration linearity could be obtained, although neither can be obtained without good repeatability.

Technical Paper

3.2 Test 2

These tests were carried out using an 8 inch DFX 32 beam meter specifically for this presentation using oil with a viscosity of ~26 cSt at ~25°C. The tests were repeated 3 days later for comparison purposes.

Figure 4 shows repeatability spread for all test carried out on February 9th

Technical Paper

Figure 5 shows uncertainty spread for all test carried out on February 12th

The results show a similar pattern to those in figure 4, with the exception of the three ringed results, although even the 2 higher values are within the OIML requirements for a 0. 3 class meter when being used at >5 times Q_{min} .

Technical Paper

Figure 6 shows uncertainty spread for both sets of tests.

Technical Paper

<u>Figure 7</u> shows both the February 9th and 12th results plotted along with the "allowable repeatability spread" curve discussed earlier. It can be seen that all results, including those in the transition zone fall within the 0.12% band, with no significant degradation in repeatability performance for $R_e < 10,000$.

Technical Paper

3.3 Test 3

As discussed earlier, this data is from calibration testing of 3 USMs with different upstream and downstream piping configurations, to confirm that any of the 3 meters could be calibrated when using the upstream and downstream meter spools held at the calibration laboratory. These spools were all bored through to within ±1 mm and were axially located to the meter(s) using shoulder bolts. The manufacturer, our Company and the end user all believed that this "interchangeability" would be demonstrated during calibration and that the planned routine "in service" procedure referred to in_**DESCRIPTION OF TESTING CARRIED OUT** would be achievable.

<u>Figure 8</u> shows the repeatability spread for the data points for each test. All results are within the acceptance limits as described for figure 7. However, for those results in the previous Figure 7, the repeatability spreads were all within the 0.12% band required for and OIML 0. 3 meter even at flow rates (Reynold's numbers) below that required by that standard.

Technical Paper

<u>Figure 9</u> shows the same results when plotted along with the Repeatability Limit curve. Although the tests were carried out on 3 meters, with varying upstream and downstream spools, these spools were manufactured to close tolerances and were expected by the meter manufacturer to not cause significant "shifts" in the meter calibrations. In the context of the intended use of those meters, the final calibration results were all acceptable. However when analysed as has been done here, it is evident that the repeatability at low Reynold's numbers – in fact at Reynold's numbers below 10,000, is not good.

Technical Paper

<u>Figure 10</u> shows the repeatability spreads for all results for all 3 sets of tests and includes the repeatability limit curve.

Technical Paper

<u>Figure 11</u> shows the repeatability spreads for all tests, including the repeatability limit curve. All 32 beam results have been shown in red and all 8 beam chordal meter results have been shown in blue

The figure shows clearly that the 32 beam meter has a consistently better performance in terms of repeatability spread both above and below Re = 10,000 and in fact shows very little loss of repeatability throughout the whole transition zone.

4 CONCLUSIONS

These results show that the 32 beam, axially symmetric USM has a repeatability performance which is largely unaffected by Reynold's number and can be used at flow rates which correspond to Reynold's number from below the transition zone, through the transition zone and up into the turbulent flow region. The OIML requirement for a class 0. 3 meter requires *3 consecutive runs*; these tests were carried out with 4 consecutive runs; however when the repeatability spread for the first three runs is calculated no repeatability spreads are greater than for 4 runs.

In these tests the 8 chordal beam meter demonstrated repeatability within the defined repeatability limits, but showed large spreads in repeatability within these limits.

It can be concluded from these results that the 32 beam axially symmetric USM has a superior repeatability performance which allows it to be used at low Reynold's numbers, and in particular, through the transition zone, where repeatability performance hardly varies from that in the turbulent flow region

Technical Paper

The test results provide the data, but how can the reasons behind the results be explained?

Good Repeatability of a measurement is obviously a combination of stable conditions of the measured quantity (measurand as per VIM version 3) and the intrinsic meter stability. In our application, the measurand is a derived quantity and is not directly measured, which adds complexity.

Flow stability as volume over time (for volumetric meters), requires stability of product characteristics such as viscosity, density and composition and also process conditions including flow and turbulence intensity as well as environmental conditions. This control is effected by pressure, temperature and flow regulation during each calibration point measurement.

From the meter point of view repeatability would be directly linked to the meter sensitivity to small differences in the measurand, process and environmental conditions.

Each meter technology will react differently to those differences.

In the case of a USM, as it is a time measurement machine, everything is down to the time measurement stability.

This time measurement is directly proportional to the average flow velocities along the ultrasonic path and therefore is constantly changing through turbulent flow.

The integration methods used to locate the path of standard USM assume averaged flow profile. Even when they are based on CFD modelling it is likely to be based on a RANS model producing an averaged flow profile.

The less you measure, the more you have to rely on the average converging to a nonbiased value. In other words, longer times for the measurement of the point requires bigger volumes, which creates more difficulties in keeping stable conditions during proves. It can be noted here that the 8 inch 32 beam results were all obtained using a nominal 3.18 m³ prove volume and that the 16 inch 8 beam results used volumes from a nominal 10.06 m³ to over 38 m³.

The ways to improve the time measurement in a USM are well known:

- Stability of the electronics (clock, signal to noise ratio, pulse output)
- Signal processing (the way we perform the time measurement on the ultrasonic pulse)
- The transducer quality (stability and repeatability of the signal rising edge, amplitude, temperature stability of the electronics)

We believe that, the number of beams and their location should be added to the list.

We return to the comparison of the chordal meter and the 32 beam meter:-

Technical Paper

The more you cover the pipe cross section, the less you need to average spatially. This is particularly important In the transition zone where turbulence can occur at any moment anywhere in the cross section.

The Results presented in this paper showed that the combination of high end electronic, signal processing and transducers with an innovative 32 beam design covering the pipe cross section, brings a significant improvement to the repeatability of USMs especially for Reynolds numbers below 10 000 and through the transition zone.

This combination of features is essential to be able to prove and use this technology efficiently and effectively in this flow regime region.

Technical Paper

5 REFERENCES

[1] Direct Numerical Simulation of Turbulent Channel Flow at $Re_{\tau} = 2320$, Kaoru Iwamoto, Nobuhide Kasagi and Yuji Suzuki Department of Mechanical Engineering, the University of Tokyo, 6th Symp. Smart Control of Turbulence, Tokyo March 6 – 9, 2005

[2] A Multipath Ultrasonic Meter with Reducing Nozzle for improved performance in the laminar/turbulent flow region, Gregor J Brown, et al, Cameron, 27th International North Sea Flow Measurement Workshop October 20 – 23, 2009

[3] Use of a Liquid Ultrasonic Flow Meter in Mixed Phase Flow, David Mills, Julien Porré, Advances and Developments in Industrial Flow Measurement , University of Warwick July 1-2 2015

[4] Separator Oil Metering Using 32 Beam USM, Julien Porré, 2016 European Flow Measurement Workshop, Netherlands

[5] 32 Beam Ultrasonic Technology for Multi Viscosity Custody Transfer Applications, Special Case Applications, Julien Porré, 2016 CEESI North American Custody Transfer Measurement

Technical Paper

Appendix A - Test Results

Test 1

4 inch DFX calibration at NEL, East Kilbride UKAS 0009

These results were obtained as part of normal calibration on two different viscosity products (Velocite with a viscosity of ~45 cSt at ~12°C and Gasoil with a viscosity of ~6 cSt at ~44°C)

1. 1 Velocite

								proved vol
	T°C	cSt	m³/h	V m/s	Re	pulses/m ³	%spread	m³
1	12.61	46.50	19.008	0.882	1,656	19.844	0.025	1.48
2	12.57	46.59	19.044	0.883	1,656	19.844		PD meter
3	12.53	46.69	19.044	0.883	1,652	19.839		
4	12.21	47.45	29.736	1.379	2,538	20.043	0. 010	2.32
5	12.34	47.14	29.772	1.381	2,558	20.044		PD meter
6	12.59	46.56	29.808	1.383	2,593	20.042		
7	12.72	46.25	60.660	2.814	5,312	19.983	0.020	3.04
8	12.83	46.00	60.732	2.817	5,348	19.982		PD meter
9	12.96	45.72	60.696	2.815	5,377	19.979		
10	13.08	45.44	90.108	4.180	8,032	20.011	0.015	4.50
11	13.18	45.23	90.072	4.178	8,066	20.013		PD meter
 12	13.28	45.00	90.072	4.178	8,107	20.014		
13	13.36	44.82	150.336	6.973	13,586	19.957	0.025	7.52
14	13.40	44.73	150.336	6.973	13,613	19.952		PD meter
15	13.47	44.58	150.336	6.973	13,659	19.954		
16	13.36	44.82	244.692	11.350	22,113	19.998	0.030	12.24
17	13.12	45.43	244.728	11.352	21,819	19.997		PD meter
18	12.83	46.00	244.728	11.352	21,549	19.992		

1.2 Gasoil

	T°C	cSt	m³/h	V m/s	Re	pulses/m ³	%spread	proved vol m ³
1	44.73	6.09	15.516	0.720	10,319	20,031	0.030	2.16
2	44.32	6.15	15.516	0.720	10,219	20,025		PD meter
3	43.95	6.21	15.552	0.721	10,144	20,025		
4	43.53	6.28	30.528	1.416	19,689	19,993	0.035	2.32
5	43.48	6.28	30.744	1.426	19,829	19,987		PD meter
6	43.86	6.22	30.888	1.433	20,114	19,986		
7	44.37	6.15	59.364	2.754	39,097	19,997	0.015	2.97
8	44.71	6.09	59.364	2.754	39,482	20,000		PD meter
9	45.04	6.04	59.364	2.754	39,809	19,999		

4.54	0.015	20,004	61,115	4.206	90.684	6.01	45.25	10
PD meter		20,001	60,735	4.208	90.720	6.05	45.01	11
		20,002	60,384	4.211	90.792	6.09	44.72	12
7.52	0.015	19,994	99,262	6.968	150.228	6.13	44.45	13
PD meter		19,997	98,963	6.970	150.264	6.15	44.35	14
		19,996	99,472	6.972	150.300	6.12	44.50	15
12.26	0.025	19,989	161,330	11.233	242.172	6.08	44.78	16
PD meter		19,994	162,749	11.313	243.900	6.07	44.87	17
		19,991	163,744	11.345	244.584	6.05	44.97	18

Technical Paper

Test 2

8 inch DFX Calibration at Belgorod, VSL CMC Certification LF2015.04.0012

2.1 These tests were carried out using oil with a viscosity of ~26 cSt at ~25°C. Test date 9th

	Т°С	cSt	m³/h	V m/s	Re	pulses/m3	%spread	proved vol m ³
1	11.27	43.80	63.35	0.748	2,956	9,810.392	0.062%	3.18
2	11.27	43.80	63.35	0.748	2,956	9,814.206		bi-di
3	11.29	43.80	63.35	0.748	2,956	9,808.094		
4	11.29	43.80	63.35	0.748	2,956	9,811.543		
5	11.36	43.60	72.64	0.858	3,404	9,837.319	0.040%	3.18
6	11.36	43.60	72.63	0.857	3,404	9,841.282		bi-di
7	11.37	43.60	72.62	0.857	3,404	9,837.600		
8	11.37	43.60	72.64	0.858	3,404	9,839.139		
9	11.46	43.4	80.69	0.953	3,799	9,868.948	0.064%	3.18
10	11.46	43.4	80.69	0.953	3,799	9,872.275		bi-di
11	11.48	43.3	80.70	0.953	3,808	9,865.926		
12	11.48	43.3	80.70	0.953	3,808	9,869.808		
13	11.59	43.1	90.68	1.071	4,299	9,903.524	0.025%	3.18
14	11.59	43.1	90.68	1.071	4,299	9,905.978		bi-di
15	11.63	43.1	90.69	1.071	4,300	9,903.543		
16	11.63	43.1	90.70	1.071	4,300	9,905.534		
17	11.76	42.7	100.42	1.186	4,806	9,930.529	0.028%	3.18
18	11.76	42.7	100.41	1.185	4,805	9,933.173		bi-di
19	11.81	42.6	100.42	1.186	4,817	9,930.904		
20	11.81	42.6	100.41	1.185	4,816	9,933.355	/ ^ /	
21	11.95	42.2	110.09	1.300	5,331	9,950.931	0.034%	3.18
22	11.95	42.2	110.09	1.300	5,331	9,953.717		bi-di
23	12.00	42.1	110.20	1.301	5,349	9,951.161		
24	12.00	42.1	110.19	1.301	5,348	9,954.269	0.0000/	2.40
25	12.22	41.0	120.10	1.418	5,899	9,966.848	0.030%	3.18 bidi
20	12.22	41.0	120.08	1.410	5,898	9,969.790		ID-IQ
21	12.27	41.3 41.5	120.15	1.419	5,910 5,017	9,900.779		
20	12.27	41.5	120.10	1.419	5,917 6 306	9,909.002	0.027%	2.19
29	12.44	41.5	129.09	1.534	6 306	9,900.313	0.027 /0	5.10 bi di
31	12.44	41.5	129.09	1.534	6 4 2 8	9,901.040		DI-UI
32	12.50	41.3	129.92	1.534	6 4 2 8	9,970.900		
33	12.68	40.8	140.27	1.656	7 025	9 989 523	0.031%	3 18
34	12.68	40.8	140.27	1.656	7 025	9 991 062	0.00170	bi-di
35	12.76	41.3	140.33	1 657	6 943	9 987 923		
36	12.76	41.3	140.31	1.657	6,942	9,989,925		
37	12.99	40.5	149.67	1.767	7.552	9.992.912	0.028%	3.18
38	12.99	40.5	149.66	1.767	7.551	9.994.567		bi-di
39	13.07	40.3	150.48	1.777	7.630	9.994.037		
40	13.07	40.3	150.46	1.776	7,629	9,995.692		
41	13.30	39.7	160.70	1.897	8,272	9,998.309	0.036%	3.18
42	13.30	39.7	160.68	1.897	8,270	10,000.339		bi-di
43	13.40	39.5	160.75	1.898	8,316	9,996.780		
44	13.40	39.5	160.74	1.898	8,315	9,998.595		

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		45	13.67	38.9	170.87	2.017	8,976	10,002.491	0.045%	3.18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		46	13.67	38.9	170.83	2.017	8,974	10,005.095		bi-di
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		47	13.77	38.7	170.94	2.018	9,026	10,000.584		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		48	13.77	38.7	170.90	2.018	9,024	10,002.930		
	l	49	14.12	38.1	180.49	2.131	9,680	10,000.379	0.042%	3.18
51 14.24 37.8 180.45 2.130 9.755 10.003.455 52 14.24 37.8 180.44 2.130 9.754 10.002.575 53 14.58 37.3 190.77 2.252 10.451 10.002.229 0.025% 3 54 14.58 37.3 190.77 2.252 10.510 10.001.075 5 56 14.71 37.1 190.78 2.252 10.501 10.002.666 0.044% 3 58 15.12 36.4 201.20 2.375 11.294 10.003.210 b 59 15.25 36.2 201.32 2.377 11.367 9.998.796 6 60 15.25 36.2 201.32 2.377 11.364 10.001.300 0 1 61 15.42 35.9 206.15 2.434 11.733 9.991.642 b 6 63 15.51 35.8 205.97 2.432 11.756 9.990.817 6 6 5 15.86 35.3 220.43 2.602 12.760	l	50	14.12	38.1	180.45	2.130	9,678	10,003.036		bi-di
52 14.24 37.8 180.44 2.130 9,754 10,004.575 53 14.58 37.3 190.77 2.252 10,452 10,003.350 b 54 14.88 37.3 190.77 2.252 10,451 10,003.357 56 14.71 37.1 190.78 2.252 10,508 10,002.666 0.044% 3 57 15.12 36.4 201.20 2.375 11,295 10,002.666 0.044% 3 58 15.12 36.4 201.19 2.377 11,367 9,998.796 6 60 15.25 36.2 201.37 2.377 11,367 9,998.796 6 61 15.42 35.9 206.14 2.434 11,733 9,991.642 b 63 15.51 35.8 205.97 2.432 11,757 9,898.34 6 64 15.51 35.8 205.97 2.432 11,757 9,994.808 0.016% 3 65 15.86 35.3 220.43 2.602 12,706 9,994	l	51	14.24	37.8	180.45	2.130	9,755	10,003.455		
53 14.58 37.3 190.78 2.252 10,452 10,002.229 0.025% 3, 54 14.58 37.3 190.77 2.252 10,451 10,001.075 5 55 14.71 37.1 190.82 2.253 10,501 10,003.557 5 56 14.71 37.1 190.78 2.252 10,508 10,003.557 57 15.12 36.4 201.19 2.375 11,294 10,003.210 b 59 15.25 36.2 201.37 2.377 11,364 10,001.300 6 61 15.42 35.9 206.15 2.434 11,733 9,991.642 b 63 15.51 35.8 205.97 2.432 11,756 9,990.817 6 65 15.86 35.3 220.43 2.602 12,760 9,994.776 0.016% 3 66 15.86 35.3 220.43 2.602 12,795 9,994.127 6 68 15.96 35.2 220.38 2.602 12,795 9,995.	l	52	14.24	37.8	180.44	2.130	9,754	10,004.575		
54 14.58 37.3 190.77 2.252 10,451 10,003.350 b 55 14.71 37.1 190.78 2.252 10,510 10,001.075 56 14.71 37.1 190.78 2.252 10,503 10,003.557 57 15.12 36.4 201.20 2.375 11,294 10,002.666 0.044% 3 58 15.12 36.4 201.37 2.377 11,367 9,998.796 0.018% 3 60 15.25 36.2 201.32 2.377 11,364 10,001.300 0 61 15.42 35.9 206.15 2.434 11,733 9,991.642 b 63 15.51 35.8 205.96 2.432 11,756 9,990.817 0.016% 3 64 15.86 35.3 220.43 2.602 12,760 9,994.776 0.016% 3 65 15.86 35.3 220.43 2.602 12,760 9,994.127 0 0 66 15.86 35.3 220.43 2.602 12,76		53	14.58	37.3	190.78	2.252	10,452	10,002.229	0.025%	3.18
55 14.71 37.1 190.82 2.253 10,510 10,001.075 56 14.71 37.1 190.78 2.252 10,508 10,003.557 57 15.12 36.4 201.20 2.375 11,294 10,003.210 b 59 15.25 36.2 201.37 2.377 11,367 9.998.796 60 15.25 36.2 201.32 2.377 11,344 10,001.300 61 15.42 35.9 206.14 2.434 11,733 9.991.642 b 63 15.51 35.8 205.96 2.432 11,757 9.989.834 64 15.51 35.8 205.96 2.432 11,756 9.990.817 65 15.86 35.3 220.43 2.602 12,760 9.995.766 b 67 15.96 35.2 220.43 2.602 12,795 9.994.177 69 16.36 34.5 230.00 2.715 13,623 9.995.992 b 71 16.47 34.3 230.00 2.715		54	14.58	37.3	190.77	2.252	10,451	10,003.350		bi-di
56 14.71 37.1 190.78 2.252 10,508 10,003.557 57 15.12 36.4 201.20 2.375 11,295 10,002.666 0.044% 3 58 15.12 36.4 201.19 2.375 11,294 10,003.210 b 59 15.25 36.2 201.32 2.377 11,364 19,905.39 0.018% 3 60 15.25 36.2 206.15 2.434 11,733 9.991.642 b 63 15.51 35.8 205.97 2.432 11,757 9,989.834 b 64 15.51 35.8 205.96 2.432 11,757 9,994.776 0.016% 3 65 15.86 35.3 220.43 2.602 12,760 9,994.776 0.016% 3 66 15.86 35.2 220.38 2.602 12,793 9,994.808 0.045% 3 67 15.96 35.2 220.38 2.602 12,793 9,994.127 0.016% 3 68 15.96 39.95.0		55	14.71	37.1	190.82	2.253	10,510	10,001.075		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		56	14.71	37.1	190.78	2.252	10,508	10,003.557		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		57	15.12	36.4	201.20	2.375	11,295	10,002.666	0.044%	3.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	l	58	15.12	36.4	201.19	2.375	11,294	10,003.210		bi-di
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	l	59	15.25	36.2	201.37	2.377	11,367	9,998.796		
	l	60	15.25	36.2	201.32	2.377	11,364	10,001.300		
	Ì	61	15.42	35.9	206.15	2.434	11,734	9,990.539	0.018%	3.18
		62	15.42	35.9	206.14	2.434	11,733	9,991.642		bi-di
		63	15.51	35.8	205.97	2.432	11,757	9,989.834		
65 15.86 35.3 220.43 2.602 12.760 $9.994.776$ $0.016%$ 3 66 15.86 35.3 220.43 2.602 12.760 $9.994.776$ $0.016%$ 3 66 15.96 35.2 220.38 2.602 12.793 $9.994.808$ 68 15.96 35.2 220.41 2.602 12.795 $9.994.127$ 69 16.36 34.5 230.00 2.715 13.623 $9.995.698$ $0.045%$ 3.700 70 16.36 34.5 230.00 2.715 13.623 $9.995.992$ b 71 16.47 34.3 230.00 2.715 13.702 $10.000.209$ 73 16.88 33.7 240.32 2.837 14.572 $9.998.037$ $0.011%$ 74 16.88 33.7 240.32 2.837 14.656 $9.997.641$ 76 17.01 33.5 240.27 2.837 14.655 $9.998.700$ 77 17.36 33.0 250.39 2.956 15.505 $9.998.355$ b 79 17.49 32.7 250.55 2.958 15.657 $9.999.766$ b 80 17.49 32.7 250.55 2.958 15.657 $9.999.766$ b 81 17.86 32.3 260.75 3.078 16.496 $9.999.766$ b 83 18.00 32.1 260.76 3.079 16.600 $9.999.766$ b 83		64	15 51	35.8	205.96	2 4 3 2	11 756	9 990 817		
6615.8635.3220.432.60212,7609,995.756b6715.9635.2220.382.60212,7939,994.8086815.9635.2220.412.60212,7959,994.1276916.3634.5230.002.71513,6239,995.96980.045%3.7016.3634.5230.002.71513,6239,995.992b7116.4734.3230.032.71613,7049,998.2487216.4734.3230.002.71513,70210,002.097316.8833.7240.322.83714,5729,998.0370.011%3.7416.8833.7240.322.83714,6569,997.6417617.0133.5240.272.83714,6559,998.7007717.3633.0250.362.95615,5039,999.3750.034%3.7817.3633.0250.392.95615,5059,998.4360.008%3.8017.4932.7250.552.95815,6579,994.4380.008%3.8217.8632.3260.753.07816,4969,999.766b8318.0032.1260.763.07916,6009,999.324848418.0032.1260.763.07916,6019,998.7558518.4531.5270.663.19517,5579,998.606b <t< td=""><th>I</th><td>65</td><td>15.86</td><td>35.3</td><td>220.43</td><td>2 602</td><td>12 760</td><td>9 994 776</td><td>0.016%</td><td>3 18</td></t<>	I	65	15.86	35.3	220.43	2 602	12 760	9 994 776	0.016%	3 18
67 15.96 35.2 220.38 2.602 12.793 $9.994.808$ 68 15.96 35.2 220.41 2.602 12.795 $9.994.127$ 69 16.36 34.5 230.00 2.715 13.623 $9.995.698$ $0.045%$ 3.70 70 16.36 34.5 230.00 2.715 13.623 $9.995.992$ b 71 16.47 34.3 230.03 2.716 13.704 $9.998.248$ 72 16.47 34.3 230.00 2.715 13.702 $10.000.209$ 73 16.88 33.7 240.32 2.837 14.572 $9.998.037$ $0.011%$ 74 16.88 33.7 240.32 2.837 14.555 $9.998.735$ b 75 17.01 33.5 240.26 2.837 14.656 $9.997.641$ 76 17.01 33.5 240.26 2.837 14.656 $9.998.700$ 77 17.36 33.0 250.36 2.956 15.505 $9.998.355$ b 79 17.49 32.7 250.55 2.958 15.657 $9.997.66$ b 80 17.49 32.7 250.55 2.958 15.657 $9.997.66$ b 81 17.86 32.3 260.75 3.078 16.496 $9.999.324$ 84 18.00 32.1 260.76 3.079 16.601 $9.999.324$ 84 18.00 32.1 260.76 3.195 <td< td=""><th>l</th><td>66</td><td>15.86</td><td>35.3</td><td>220.43</td><td>2 602</td><td>12 760</td><td>9 995 756</td><td>0.01070</td><td>bi-di</td></td<>	l	66	15.86	35.3	220.43	2 602	12 760	9 995 756	0.01070	bi-di
6815.9635.2220.41 2.602 12.795 $9.994.127$ 6916.3634.5230.002.715 $13,623$ $9.995.698$ 0.045% 3.70 7016.3634.5230.002.715 $13,623$ $9.995.992$ b7116.4734.3230.032.716 $13,704$ $9.998.248$ 7216.4734.3230.002.715 $13,702$ $10,000.209$ 7316.8833.7240.322.837 $14,572$ $9.998.735$ b7416.8833.7240.322.837 $14,656$ $9.997.641$ 7617.0133.5240.262.837 $14,655$ $9.998.700$ 7717.3633.0250.362.956 $15,503$ $9.999.037$ 0.034% 3.78 7817.3633.0250.392.956 $15,505$ $9.998.555$ b8017.4932.7250.552.958 $15,657$ $9.994.438$ 0.008% 3.82 78.4117.8632.3260.75 3.078 $16,495$ $9.999.438$ 0.008% 3.82 8117.8632.3260.76 3.079 $16,600$ $9.999.324$ 3.82 17.86 32.3 260.76 3.079 $16,601$ $9.998.75$ 8518.45 31.5 270.66 3.195 $17,557$ $9.998.606$ b 8318.00 32.1 260.76 3.079 $16,601$ $9.998.75$ 8518.45 31.5 <	l	67	15.96	35.2	220.38	2 602	12 793	9 994 808		
69 16.36 34.5 230.00 2.715 $13,623$ $9,995.698$ $0.045%$ 3 70 16.36 34.5 230.00 2.715 $13,623$ $9,995.992$ b 71 16.47 34.3 230.03 2.716 $13,704$ $9,998.248$ 72 16.47 34.3 230.00 2.715 $13,702$ $10,000.209$ 73 16.88 33.7 240.32 2.837 $14,572$ $9,998.735$ b 74 16.88 33.7 240.32 2.837 $14,656$ $9,997.641$ 76 17.01 33.5 240.26 2.837 $14,655$ $9,998.700$ 77 17.36 33.0 250.36 2.956 $15,503$ $9,999.037$ $0.034%$ $3.$ 78 17.36 33.0 250.39 2.956 $15,505$ $9,998.355$ b 79 17.49 32.7 250.55 2.958 $15,657$ $9,994.38$ $0.008%$ $3.$ 82 17.49 32.7 250.55 2.958 $15,657$ $9,999.438$ $0.008%$ $3.$ 82 17.86 32.3 260.74 3.078 $16,499$ $9,999.324$ b 83 18.00 32.1 260.76 3.079 $16,601$ $9,999.324$ 84 18.00 32.1 260.76 3.195 $17,557$ $9,998.606$ b 87 18.60 31.3 270.92 3.199 $17,687$ $9,995.410$ $a.66$ <th>l</th> <td>68</td> <td>15.96</td> <td>35.2</td> <td>220.41</td> <td>2.602</td> <td>12,795</td> <td>9,994,127</td> <td></td> <td></td>	l	68	15.96	35.2	220.41	2.602	12,795	9,994,127		
7016.3634.5230.002.71513,6239,995.992 h 7116.4734.3230.032.71613,7049,998.2487216.4734.3230.002.71513,70210,000.2097316.8833.7240.322.83714,5729,998.0370.011%7416.8833.7240.322.83714,6569,997.6417517.0133.5240.272.83714,6559,998.7007717.3633.0250.362.95615,5039,999.0370.034%3.7817.3633.0250.392.95615,5059,998.355b7917.4932.7250.532.95815,6579,995.6708117.8632.3260.753.07816,4969,999.3248217.8632.3260.763.07916,6019,999.3248418.0032.1260.763.07916,6019,999.7668318.0032.1260.763.07916,6019,999.3248418.0032.1270.663.19517,5579,998.6068718.6031.3270.923.19917,6879,995.4108818.6031.3270.853.19817,6839,996.2980.009%39019.0430.7280.763.31518,6889,996.2980.009%39119.2130.5280.703.314 <th>Ì</th> <td>69</td> <td>16.36</td> <td>34.5</td> <td>230.00</td> <td>2.715</td> <td>13.623</td> <td>9.995.698</td> <td>0.045%</td> <td>3.18</td>	Ì	69	16.36	34.5	230.00	2.715	13.623	9.995.698	0.045%	3.18
7116.4734.3230.032.71613,7049,98.2487216.4734.3230.002.71513,70210,000.2097316.8833.7240.322.83714,5729,998.0370.011%3.7416.8833.7240.322.83714,5729,998.735b7517.0133.5240.272.83714,6569,997.641767617.0133.5240.262.83714,6559,998.7003.7717.3633.0250.362.95615,5039,999.0370.034%3.7817.3633.0250.392.95615,5059,998.355b7917.4932.7250.532.95815,6579,995.6708117.8632.3260.753.07816,4969,999.3248217.8632.3260.743.07916,6009,999.3248418.0032.1260.763.07916,6019,998.9758518.4531.5270.663.19517,5579,998.606b8718.6031.3270.923.19917,6879,995.4108818.6031.3270.853.19817,6839,996.2980.009%39019.0430.7280.763.31518,6889,996.692b9119.2130.5280.703.31418,8069,996.7055		70	16.36	34.5	230. 00	2.715	13.623	9.995.992		bi-di
7216.4734.3230.002.71513,70210,000.2097316.8833.7240.322.83714,5729,998.0370.011%3.7416.8833.7240.322.83714,5729,998.735b7517.0133.5240.272.83714,6569,997.6417617.0133.5240.262.83714,6559,998.7007717.3633.0250.362.95615,5039,999.0370.034%3.7817.3633.0250.392.95615,5059,998.355b7917.4932.7250.532.95815,6579,995.6708117.8632.3260.753.07816,4969,999.4380.008%3.8217.8632.3260.743.07816,4959,999.766b8318.0032.1260.763.07916,6019,999.3243.8418.0032.1260.783.07916,6019,999.7630.032%3.8518.4531.5270.643.19517,5579,998.606bb8718.6031.3270.923.19917,6879,995.4103.8818.6031.3270.853.19817,6839,996.2980.009%3.9019.0430.7280.763.31518,6889,996.692bb9119.2130.5280.603.314 <th></th> <td>71</td> <td>16.47</td> <td>34.3</td> <td>230.03</td> <td>2.716</td> <td>13.704</td> <td>9.998.248</td> <td></td> <td></td>		71	16.47	34.3	230.03	2.716	13.704	9.998.248		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		72	16.47	34.3	230.00	2.715	13.702	10.000.209		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I	73	16.88	33.7	240.32	2.837	14.572	9.998.037	0.011%	3.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	l	74	16.88	33.7	240.32	2.837	14.572	9.998.735		bi-di
76 17.01 33.5 240.26 2.837 $14,655$ $9,998.700$ 77 17.36 33.0 250.36 2.956 $15,503$ $9,999.037$ $0.034%$ 3.78 78 17.36 33.0 250.39 2.956 $15,505$ $9,998.355$ b 79 17.49 32.7 250.53 2.958 $15,656$ $9,996.496$ 80 17.49 32.7 250.55 2.958 $15,657$ $9,995.670$ 81 17.86 32.3 260.75 3.078 $16,496$ $9,999.438$ $0.008%$ 3.82 82 17.86 32.3 260.75 3.078 $16,495$ $9,999.766$ b 83 18.00 32.1 260.76 3.079 $16,600$ $9,999.324$ b 84 18.00 32.1 260.78 3.079 $16,601$ $9,998.975$ 5 85 18.45 31.5 270.66 3.195 $17,558$ $9,997.763$ $0.032%$ 3.86 87 18.60 31.3 270.92 3.199 $17,687$ $9,995.410$ 8 88 18.60 31.3 270.85 3.198 $17,683$ $9,996.298$ $0.009%$ 3 90 19.04 30.7 280.76 3.315 $18,688$ $9,996.298$ $0.009%$ 3 90 19.04 30.7 280.76 3.314 $18,806$ $9,996.705$ b 91 19.21 30.5 280.69 3.314 $18,$	l	75	17.01	33.5	240.27	2.837	14.656	9.997.641		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	l	76	17.01	33.5	240.26	2.837	14,655	9,998.700		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ì	77	17.36	33.0	250.36	2.956	15,503	9,999.037	0.034%	3.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		78	17.36	33.0	250.39	2.956	15,505	9,998.355		bi-di
80 17.49 32.7 250.55 2.958 15,657 9,995.670 81 17.86 32.3 260.75 3.078 16,496 9,999.438 0.008% 3. 82 17.86 32.3 260.74 3.078 16,495 9,999.766 b 83 18.00 32.1 260.76 3.079 16,600 9,999.324 b 84 18.00 32.1 260.78 3.079 16,601 9,998.975 c 85 18.45 31.5 270.66 3.195 17,558 9,997.763 0.032% 3. 86 18.45 31.5 270.64 3.195 17,557 9,998.606 b 87 18.60 31.3 270.92 3.199 17,687 9,995.410 c 88 18.60 31.3 270.85 3.198 17,683 9,998.082 c 89 19.04 30.7 280.76 3.315 18,688 9,996.298 0.009% 3 90 19.04 30.7 280.76 3.315 18,688		79	17.49	32.7	250.53	2.958	15,656	9,996.496		
81 17.86 32.3 260.75 3.078 16,496 9,999.438 0.008% 3. 82 17.86 32.3 260.74 3.078 16,495 9,999.766 b 83 18.00 32.1 260.76 3.079 16,600 9,999.324 b 84 18.00 32.1 260.78 3.079 16,601 9,998.975 c 85 18.45 31.5 270.66 3.195 17,558 9,997.763 0.032% 3. 86 18.45 31.5 270.64 3.195 17,557 9,998.606 b 87 18.60 31.3 270.92 3.199 17,687 9,995.410 c 88 18.60 31.3 270.85 3.198 17,683 9,998.082 c 89 19.04 30.7 280.76 3.315 18,688 9,996.298 0.009% 3 90 19.04 30.7 280.76 3.315 18,688 9,996.692 b 91 19.21 30.5 280.70 3.314		80	17.49	32.7	250.55	2.958	15,657	9,995.670		
82 17.86 32.3 260.74 3.078 16,495 9,999.766 b 83 18.00 32.1 260.76 3.079 16,600 9,999.324 b 84 18.00 32.1 260.78 3.079 16,601 9,999.324 b 85 18.45 31.5 270.66 3.195 17,558 9,997.763 0.032% 3. 86 18.45 31.5 270.64 3.195 17,557 9,998.606 b 87 18.60 31.3 270.92 3.199 17,687 9,995.410 b 88 18.60 31.3 270.85 3.198 17,683 9,998.082 c 89 19.04 30.7 280.76 3.315 18,688 9,996.298 0.009% 3. 90 19.04 30.7 280.76 3.315 18,688 9,996.692 b 91 19.21 30.5 280.70 3.314 18,806 9,996.705 b	I	81	17.86	32.3	260.75	3.078	16,496	9,999.438	0.008%	3.18
83 18.00 32.1 260.76 3.079 16,600 9,999.324 84 18.00 32.1 260.78 3.079 16,601 9,998.975 85 18.45 31.5 270.66 3.195 17,558 9,997.763 0.032% 3. 86 18.45 31.5 270.64 3.195 17,557 9,998.606 b 87 18.60 31.3 270.92 3.199 17,687 9,995.410 5 88 18.60 31.3 270.85 3.198 17,683 9,996.082 5 89 19.04 30.7 280.76 3.315 18,688 9,996.692 b 90 19.04 30.7 280.76 3.315 18,688 9,996.692 b 91 19.21 30.5 280.70 3.314 18,806 9,996.705	l	82	17.86	32.3	260.74	3.078	16,495	9,999.766		bi-di
84 18.00 32.1 260.78 3.079 16,601 9,998.975 85 18.45 31.5 270.66 3.195 17,558 9,997.763 0.032% 3. 86 18.45 31.5 270.64 3.195 17,557 9,998.606 b 87 18.60 31.3 270.92 3.199 17,687 9,995.410 88 18.60 31.3 270.85 3.198 17,683 9,998.082 89 19.04 30.7 280.76 3.315 18,688 9,996.298 0.009% 3. 90 19.04 30.7 280.76 3.315 18,688 9,996.692 b 91 19.21 30.5 280.70 3.314 18,806 9,996.705	l	83	18.00	32.1	260.76	3.079	16,600	9,999.324		
85 18.45 31.5 270.66 3.195 17,558 9,997.763 0.032% 3. 86 18.45 31.5 270.64 3.195 17,557 9,998.606 b 87 18.60 31.3 270.92 3.199 17,687 9,995.410 b 88 18.60 31.3 270.85 3.198 17,683 9,998.082 c 89 19.04 30.7 280.76 3.315 18,688 9,996.298 0.009% 3. 90 19.04 30.7 280.76 3.315 18,688 9,996.692 b 91 19.21 30.5 280.70 3.314 18,806 9,996.705 92 19.21 30.5 280.69 3.314 18,806 9,997.196	l	84	18.00	32.1	260.78	3.079	16,601	9,998.975		
86 18.45 31.5 270.64 3.195 17,557 9,998.606 b 87 18.60 31.3 270.92 3.199 17,687 9,995.410 88 18.60 31.3 270.85 3.198 17,683 9,998.082 89 19.04 30.7 280.76 3.315 18,688 9,996.298 0.009% 3. 90 19.04 30.7 280.76 3.315 18,688 9,996.692 b 91 19.21 30.5 280.70 3.314 18,806 9,996.705 92 19.21 30.5 280.69 3.314 18,806 9,997.196	Ì	85	18.45	31.5	270.66	3.195	17,558	9,997.763	0.032%	3.18
87 18.60 31.3 270.92 3.199 17,687 9,995.410 88 18.60 31.3 270.85 3.198 17,683 9,998.082 89 19.04 30.7 280.76 3.315 18,688 9,996.298 0.009% 3. 90 19.04 30.7 280.76 3.315 18,688 9,996.692 b 91 19.21 30.5 280.70 3.314 18,806 9,996.705 92 19.21 30.5 280.69 3.314 18,806 9,997.196		86	18.45	31.5	270.64	3.195	17,557	9,998.606		bi-di
88 18.60 31.3 270.85 3.198 17,683 9,998.082 89 19.04 30.7 280.76 3.315 18,688 9,996.298 0.009% 3. 90 19.04 30.7 280.76 3.315 18,688 9,996.692 b 91 19.21 30.5 280.70 3.314 18,806 9,996.705 92 19.21 30.5 280.69 3.314 18,806 9,997.196		87	18.60	31.3	270.92	3.199	17,687	9,995.410		
89 19.04 30.7 280.76 3.315 18,688 9,996.298 0.009% 3. 90 19.04 30.7 280.76 3.315 18,688 9,996.692 b 91 19.21 30.5 280.70 3.314 18,806 9,996.705 92 19.21 30.5 280.69 3.314 18.806 9.997.196		88	18.60	31.3	270.85	3.198	17,683	9,998.082		
90 19.04 30.7 280.76 3.315 18,688 9,996.692 b 91 19.21 30.5 280.70 3.314 18,806 9,996.705 b 92 19.21 30.5 280.69 3.314 18.806 9.997.196 b	ļ	89	19.04	30.7	280.76	3.315	18,688	9,996.298	0.009%	3.18
91 19.21 30.5 280.70 3.314 18,806 9,996.705 92 19.21 30.5 280.69 3.314 18,806 9,997.196		90	19.04	30.7	280.76	3.315	18,688	9,996.692		bi-di
02 10 21 30 5 280 60 3 314 18 806 9 007 106		91	19.21	30.5	280.70	3.314	18,806	9,996.705		
		92	19.21	30.5	280.69	3.314	18,806	9,997.196		

Technical Paper

93	19.54	30.1	290.24	3.427	19,704	9,991.106	0.026%	3.18
94	19.54	30.1	290.23	3.427	19,703	9,991.685		bi-di
95	19.61	30.0	290.10	3.425	19,760	9,993.168		
96	19.61	30.0	290.09	3.425	19,759	9,993.739		
97	19.93	29.6	300.94	3.553	20,775	9,993.507	0.011%	3.18
98	19.93	29.6	300.91	3.553	20,773	9,994.402		bi-di
99	20.01	29.5	300.77	3.551	20,834	9,993.461		
100	20.01	29.5	300.78	3.551	20,835	9,993.259		
101	20.21	29.3	311.65	3.679	21,735	9,995.875	0.009%	3.18
102	20.21	29.3	311.66	3.680	21,736	9,995.730		bi-di
103	20.29	29.2	311.53	3.678	21,801	9,994.969		
104	20.29	29.2	311.53	3.678	21,801	9,995.090		
105	20.52	28.9	321.60	3.797	22,739	9,996.180	0.007%	3.18
106	20.52	28.9	321.59	3.797	22,739	9,996.814		bi-di
107	20.62	28.9	321.56	3.796	22,736	9,996.833		
108	20.62	28.9	321.57	3.797	22,737	9,996.696		
109	20.94	28.4	330.95	3.907	23,812	9,997.058	0.026%	3.18
110	20.94	28.4	330.94	3.907	23,812	9,997.775		bi-di
111	21.06	28.3	330.94	3.907	23,896	9,995.204		
112	21.06	28.3	330.93	3.907	23,895	9,995.582		
113	21.42	27.9	340.63	4.022	24,948	9,995.649	0.010%	3.18
114	21.42	27.9	340.61	4.021	24,947	9,996.262		bi-di
115	21.55	27.8	340.60	4.021	25,036	9,995.554		
116	21.55	27.8	340.62	4.021	25,037	9,995.286		
117	21.92	27.4	351.04	4.144	26,180	9,998.182	0.004%	3.18
118	21.92	27.4	351.04	4.144	26,180	9,998.329		bi-di
119	22.05	27.2	350.76	4.141	26,351	9,997.900		
120	22.05	27.2	350.76	4.141	26,351	9,998.109		

2.2 A repeat of the test 3 days earlier to check on repeatability when compared with the earlier tests.

	Т°С	cSt	m³/h	V m/s	Re	pulses/m3	%spread	proved vol m ³
1	6.80	57.6	61.31	0.724	2,175	9,876.008	0.023%	3.18
2	6.80	57.6	61.33	0.724	2,176	9,878.059		bi-di
3	6.84	57.4	61.27	0.723	2,181	9,875.829		
4	6.84	57.4	61.29	0.724	2,182	9,877.719		
5	6.93	57.1	70.83	0.836	2,535	9,934.091	0.100%	3.18
6	6.93	57.1	70.83	0.836	2,535	9,937.001		bi-di
7	7.03	56.8	70.65	0.834	2,542	9,927.091		
8	7.03	56.8	70.67	0.834	2,542	9,928.826		
9	7.24	56.2	81.06	0.957	2,947	9,947.059	0.059%	3.18
10	7.24	56.2	81.07	0.957	2,948	9,948.820		bi-di
11	7.32	55.9	80.70	0.953	2,950	9,942.965		
12	7.32	55.9	80.72	0.953	2,951	9,943.926		
13	7.43	55.5	90.89	1.073	3,346	9,951.624	0.046%	3.18
14	7.43	55.5	90.89	1.073	3,346	9,953.621		bi-di
15	7.55	55.2	90.90	1.073	3,365	9,949.029		
16	7.55	55.2	90.90	1.073	3,365	9,950.168		

h	47	7 70	F 4 F	400 74	4 400	0 777	0007 704	0.0040/	0.40
	17	1.16	54.5	100.74	1.189	3.777	9967.784	0.021%	3.18
	18	7.76	54.5	100.74	1.189	3,777	9,969.150		bi-di
	19	7.85	54.2	100.77	1.190	3,799	9,968.330		
	20	7.85	54.2	100.78	1.190	3,800	9,969.879		
	21	8.09	53.5	110.13	1.300	4.206	9984.516	0.034	3.18
	22	8.09	53.5	110.13	1.300	4,206	9,985.990		bi-di
	23	8.18	53.2	110.15	1.300	4,231	9,982.562		
	24	8.18	53.2	110.16	1.301	4,231	9,983.538		
	25	8.44	52.5	119.95	1.416	4,669	9,998.267	0.030%	3.18
	26	8.44	52.5	119.95	1.416	4,669	9,999.904		bi-di
	27	8.54	52.1	119.99	1.417	4,706	9,996.939		
	28	8.54	52.1	119.99	1.417	4,706	9,998.500		
Î	29	8.78	51.5	130.91	1.546	5,194	10,011.117	0.045%	3.18
	30	8.78	51.5	130.88	1.545	5.193	10.014.489		bi-di
	31	8.89	51.1	130.88	1,545	5,234	10.010.018		
	32	8 89	51.1	130.86	1 545	5 233	10 013 088		
I	33	9.28	50.2	139.97	1 653	5 698	10 017 235	0.032%	3 18
	34	9.28	50.2	139.94	1 652	5 696	10,020,398	0.00270	bi-di
	35	9.38	<u>4</u> 9 9	140.00	1.653	5 733	10,020.000		brui
	36	9.38	40.0 40.0	140.00	1.653	5 733	10,010,010		
Ì	37	9.50	40.0	140.00	1 771	6 216	10,013,000	0.032%	3 18
	38	0.00 0.50	40.0	140.07	1.771	6 2 1 5	10,025,150	0.002 /0	bi-di
	30	0.00	40.0 /0 0	150.04	1.770	6 256	10,020.077		DI-CI
	10	0.72	40.0 /0.0	150.01	1.771	6 256	10,022.000		
Ì	11	0.08	48.3	160.28	1.802	6 781	10,025,309	0.035%	3 18
	/12	0.00 0.08	40.0	160.20	1.052	6 780	10,023.739	0.00070	bi_di
	13	10 10	40.0	160.20	1.032	6,830	10,027.719		bi-di
	40	10.10	47.0	160.02	1.090	6,838	10,023.140		
ľ	44	10.10	47.3	170.20	2 012	7 362	10,020.702	0.038%	3 18
	40	10.30	47.3	170.40	2.012	7 362	10,030,828	0.00070	bi di
	40	10.50	46.0	170.40	2.012	7,302	10,030.020		bi-di
	47	10.52	40.9	170.34	2.011	7 422	10,020.990		
ì	40	11.00	40.9	182.85	2.011	8 176	10,020.319	0.034%	3 18
	5 0	11.00	45.7	182.00	2.150	8 175	10,030.200	0.00470	bi di
	51	11.00	45.7	182.05	2.139	8 212	10,031.002		bi-ui
	52	11.15	45.3	182.00	2.149	0,212 8 211	10,020.140		
Ì	52	11/13	43.3	102.00	2.143	8 75/	10,023,272	0.031%	3 18
	50	11.40	44.7	101.46	2.201	0,754 0,752	10,025.047	0.03170	5.10 bi di
	55	11.40	44.7	101 50	2.200	0,752	10,020.242		bi-ui
	56	11.59	44.5	101 47	2.201	0,000	10,025.005		
ì	57	11.09	44.5	200.20	2.201	0,052	10,020.920	0 0240/	2 10
	50	11.95	43.5	200.29	2.305	9,409	10,020.145	0.034 /0	5.10 bidi
	50	12.30	40.0	200.20	2.305	9,400	10,027.319		DI-UI
	09	12.12	40.1	200.37	2.300	9,500	10,024.130		
ł	61	12.12	43.1	200.30	2.300	9,499	10,024.960	0.0970/	2.40
	01 60	12.10 10.10	43.U 12 0	210.32 210.22	2.400 0 100	9,990 0,005	10,027.010 10,026.025	0.007 %	ک. اگ ہے :ہ
	0Z	12.10	40.0	210.00	2.400	3,330 10 052	10,020.920		ID-IU
	03	12.20	42.1	210.00	2.400	10,003	10,010.271		
ļ	04	12.28	42.7	210.02	2.480	10,051	10,020.768	0.0400/	0.40
	65	12.52	42.3	219.74	2.594	10,615	10,017.629	0.019%	3.18
	00	12.52	42.3	219.74	2.594	10,615	10,018.260		ID-ID
	67	12.61	42.1	219.63	2.593	10,660	10,018.892		
1	68	12.61	42.1	219.63	2.593	10,660	10,019.501		

69	12.82	41.8	230.74	2.724	11,280	10,017.579	0.042%	3.18
70	12.82	41.8	230.74	2.724	11,280	10,018.292		bi-di
71	12.92	41.6	230.58	2.722	11,326	10,021.218		
72	12.92	41.6	230.57	2.722	11,326	10,021.786		
73	13.17	41.1	241.25	2.848	11,995	10,020.943	0.031%	3.18
74	13.17	41.1	241.30	2.849	11,997	10,019.372		bi-di
75	13.26	40.9	241.38	2.850	12,060	10,018.156		
76	13.26	40.9	241.39	2.850	12,060	10,017.831		
77	13.42	40.6	250.99	2.963	12,633	10,020.639	0.025%	3.18
78	13.42	40.6	251.01	2.963	12,634	10,020.380		bi-di
79	13.51	40.4	251.23	2.966	12,707	10,018.130		
80	13.51	40.4	251.21	2.966	12,706	10,019.034		
81	13.72	40.0	260.99	3.081	13,333	10,023.047	0.010%	3.18
82	13.72	40.0	260.99	3.081	13,333	10,023.188		bi-di
83	13.80	39.8	260.78	3.079	13,389	10,023.630		
84	13.80	39.8	260.78	3.079	13,389	10,024.063		
85	13.99	39.5	270.82	3.197	14,010	10,021.274	0.009%	3.18
86	13.99	39.5	270.83	3.198	14,011	10,021.246		bi-di
87	14.07	39.3	270.65	3.195	14,073	10,022.159		
88	14.07	39.3	270.67	3.196	14,074	10,021.421		
89	14.21	39.1	281.37	3.322	14,705	10,026.104	0.011%	3.18
90	14.21	39.1	281.4	3.322	14,706	10,025.397		bi-di
91	14.3	39.0	281.17	3.320	14,732	10,025.298		
92	14.3	39.0	281.18	3.320	14,733	10,025.049		
93	14.44	38.6	290.78	3.433	15,394	10,025.117	0.015%	3.18
94	14.44	38.6	290.82	3.434	15,396	10,024.229		bi-di
95	14.54	38.6	290.91	3.435	15,400	10,024.030		
96	14.54	38.6	290.93	3.435	15,401	10,023.642		
97	14.83	38.0	298.44	3.523	16,048	10,023.698	0.018%	3.18
98	14.83	38.0	298.45	3.524	16,049	10,023.384		bi-di
99	14.93	37.7	298.34	3.522	16,171	10,025.187		
100	14.93	37.7	298.38	3.523	16,173	10,023.957		
101	15.26	37.5	311.79	3.681	16,990	10,026.508	0.012%	3.18
102	15.26	37.5	311.82	3.681	16,992	10,025.290		bi-di
103	15.37	37.3	309.87	3.658	16,976	10,025.663		
104	15.37	37.3	309.87	3.658	16,976	10,025.314		
105	15.68	37.2	320.44	3.783	17,602	10,025.375	0.045%	3.18
106	15.68	37.2	320.47	3.784	17,604	10,024.649		bi-di
107	15.8	37.0	320.31	3.782	17,690	10,021.297		
108	15.8	37.0	320.33	3.782	17,691	10,020.910		
109	16.04	36.2	329.70	3.893	18,611	10,024.478	0.021%	3.18
110	16.04	36.2	329.72	3.893	18,612	10,023.984		bi-di
111	16.15	36.4	329.95	3.895	18,523	10,022.565		
112	16.15	36.4	329.95	3.895	18,523	10,022.389		
113	16.35	36.6	339.34	4.006	18,946	10,019.935	0.027%	3.18
114	16.35	36.6	339.38	4.007	18,948	10,019.200		bi-di
115	16.48	35.9	339.25	4.005	19,310	10,021.882		
116	16.48	35.9	339.27	4.006	19,311	10,021.649	0.00	
117	16.71	35.9	349.03	4.121	19,867	10,021.845	0.027%	3.18
118	16.71	35.9	349.05	4.121	19,868	10,021.589		bi-di
119	16.85	35.4	349.14	4.122	20,154	10,019.134		
120	16.85	35.4	349.15	4.122	20,154	10,019.231		

121	6.17	59.8	805.13	9.506	27,512	10,038.174	0.056%	3.18
122	6.17	59.8	805.05	9.505	27,509	10,039.311		bi-di
123	6.38	59.2	805.96	9.515	27,820	10,033.666		
124	6.38	59.2	805.83	9.514	27,815	10,035.177		

Technical Paper

Test 3

4

5

19.97

19.91

79.13

79.39

1353.100

1353.100

Three off 16 inch USM calibrated using Drakeol 32 using three sets of upstream and downstream spools.

The meters have been designated Meter A, Meter B and Meter C

The spools have been designated Upstream 1, Upstream 2, Upstream Spare, Downstream 1, Downstream 2 and Downstream Spare

The following tests were carried out:

Test	Upstream Spool	Meter	Downstream Spool
3.1	Spare	А	Spare
3.2	Spare	А	1
3.3	1	А	1
3.4	Spare	В	Spare
3.5	2	В	2
3.6	Spare	С	Spare

Test 3.1 Test setup Upstream Spare/ Meter A/ Downstream Spare

	T°C	cSt	m³/h	V m/s	Re	pulses/m3	%spread	proved vol m ³
1	19.95	79.21	149.500	0.217	1,722	940.462	0.119	10.06
2	19.92	79.36	149.600	0.218	1,721	940.053		Uni
3	19.96	79.20	149.500	0.217	1,724	939.341		

	T°C	cSt	m³/h	V m/s	Re	pulses/m3	%spread	proved vol m ³
1	19.98	79.10	447.000	0.650	5,156	940.738	0.190	10.06
2	19.93	79.30	446.100	0.649	5,136	940.054		Uni
3	19.93	79.31	447.300	0.650	5,151	939.637		
4	19.94	79.24	446.900	0.650	5,142	941.418		
	T°C	cSt	m³/h	V m/s	Re	pulses/m3	%spread	proved vol m ³
1	20.00	78.98	751.500	1.093	8,682	940.543	0.045	21.26
2	20.00	78.98	750.700	1.092	8,672	940.754		USM master
3	19.99	79.05	750.500	1.091	8,660	940.964		meter
	T°C	cSt	m³/h	V m/s	Re	pulses/m3	%spread	proved vol m ³
1	20.08	78.65	1356.500	1.972	15,737	940.543	0.045	21.26
2	20.06	78.73	1356.300	1.972	15,716	940.754		USM master
3	20.02	78.89	1355.600	1.971	15,680	940.964		meter

15,608

15,558

940.754

940.964

1.967

1.967

Technical Paper

	Т°С	cSt	m³/h	Re	pulses/m3	%spread	proved vol m ³
1	19.99	79.06	1950.300	22,517	940.342	0.079	38.28
2	19.90	79.43	1954.700	22,450	940.761		USM master
3	19.91	79.41	1952.600	22,449	940.017		

Test 3.2Test setup Upstream Spare/ Meter A/ Downstream 1

Т°С	cSt	m³/h	V m/s	Re	pulses/m3	%spread	proved vol m ³
20.11	78.52	148.600	0.216	1,728	940.022	0.564	10.06
19.92	79.37	148.900	0.217	1,709	941.987		Uni
20.03	78.88	148.900	0.217	1,721	941.594		
20.11	78.51	148.800	0.216	1,729	941.084		
19.88	79.55	149.300	0.217	1,704	945.320		
				,			
т⁰С	cSt	m ³ /h	V m/s	Ro	nulses/m3	%enread	proved vol m ³
10.86	79.62	446 500	0.640	5 110	0/2 033	0 423	10.06
10.00	70.37	440.000	0.043	5 120	942.000	0.425	l Ini
10.02	70.30	447.000	0.000	5 132	030 313		Ulli
20.00	78.00	445.400	0.040	5 150	939.313		
10.00	70.99	440.400	0.049	5 167	032 616		
19.00	70.01	445.500	0.047	5,107	930.010		
-0-	_	3.,					3
T°C	cSt	m³/h	V m/s	Re	pulses/m3	%spread	proved vol m ³
20.02	78.92	754.700	1.097	8,711	942.174	0.185	31.86
40.05	70.00	752.000	4 000	0.005	040 407		USM master
19.95	79.22	753.900	1.096	8,685	940.437		meter
19.93	79.32	754.700	1.097	8,678	940.991		
19.93	79.28	755.800	1.099	8,693	941.297		
19.97	79.12	756.300	1.100	8,715	941.450		
		2					2
Т°С	cSt	m³/h		Re	pulses/m3	%spread	proved vol m ³
20.08	78.65	1356.500		15,737	940.664	0.054	26.60
~~ ~~							USM master
20.06	78.73	1356.300		15,716	940.752		meter
20.02	78.89	1355.600		15,680	940.631		
19.97	79.13	1353.100		15,608	940.377		
19.91	79.39	1353.100		15,558	940.242		
T°C	cSt	m³/h		Re	pulses/m3	%spread	proved vol m ³
19.99	79.06	1950.300		22,517	940.342	0.079	38.28
							USM master
19.90	79.43	1954.700		22,450	940.761		meter
19.91	79.41	1952.600		22,449	940.017		
	T°C 20.11 19.92 20.03 20.11 19.88 T°C 19.86 19.92 19.93 20.00 19.88 T°C 20.02 19.95 19.93 19.93 19.93 19.93 19.93 19.93 19.93 19.93 19.93 19.93 19.93 19.93 19.97 T°C 20.08 20.06 20.02 19.97 19.91 T°C	T°C cSt 20.11 78.52 19.92 79.37 20.03 78.88 20.11 78.51 19.88 79.55 T°C cSt 19.92 79.37 19.88 79.55 T°C cSt 19.92 79.37 19.93 79.30 20.00 78.99 19.93 79.30 20.00 78.99 19.88 78.81 T°C cSt 20.02 78.92 19.95 79.22 19.93 79.32 19.93 79.32 19.93 79.28 19.97 79.12 T°C cSt 20.08 78.65 20.02 78.89 19.97 79.13 19.91 79.39 T°C cSt 20.02 78.89 19.97 79.13 19.91 79.39 <td>T°CcStm^3/h20.1178.52148.60019.9279.37148.90020.0378.88148.90020.1178.51148.80019.8879.55149.300T°CcStm^3/h19.8679.62446.50019.9279.37447.00019.9379.30445.40020.0078.99446.40019.8878.81445.300T°CcStm^3/h20.0278.92754.70019.9379.22753.90019.9379.28755.80019.9779.12756.300T°CcStm^3/h20.0878.651356.50020.0678.731356.30020.0278.891355.60019.9179.391353.10019.9179.331954.70019.9079.431954.70019.9179.411952.600</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	T°CcSt m^3/h 20.1178.52148.60019.9279.37148.90020.0378.88148.90020.1178.51148.80019.8879.55149.300T°CcSt m^3/h 19.8679.62446.50019.9279.37447.00019.9379.30445.40020.0078.99446.40019.8878.81445.300T°CcSt m^3/h 20.0278.92754.70019.9379.22753.90019.9379.28755.80019.9779.12756.300T°CcSt m^3/h 20.0878.651356.50020.0678.731356.30020.0278.891355.60019.9179.391353.10019.9179.331954.70019.9079.431954.70019.9179.411952.600	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Technical Paper

Test	3.3	Test setu	ıp Upstrean	nstream 1			
	T°C	cSt	m³/h	Re	pulses/m3	%spread	proved vol m ³
1	19.88	1709.00	148.900	1,709	941.576	0.094	10.06
2	16.96	1718.00	149.000	1,718	940.797		uni
3	20.03	1724.00	149.000	1,724	940.696		
	Т°С	cSt	m³/h	Re	pulses/m3	%spread	proved vol m ³
1	20.06	78.70	447.300	5,182	941.420	0.169	10.06
2	19.96	79.15	446.900	5,156	939.851		uni
3	19.92	79.37	446.700	5,141	939.836		
	Т°С	cSt	m³/h	Re	pulses/m3	%spread	proved vol m ³
1	19.92	79.34	754.300	8,672	940.922	0.135	10.06
2	19.92	79.35	754.500	8,676	940.559		uni
3	19.93	79.28	756.200	8,692	941.825		
4	19.98	79.10	755.900	8,718	940.810		
5	20.02	78.90	756.600	8,750	940.641		
	T°C	cSt	m³/h	Re	pulses/m3	%spread	proved vol m ³
1	20.13	78.43	1361.600	15,848	940.295	0.051	37.20
2	20.10	78.52	1358.800	15,787	940.771		USM master
3	20.05	78.79	1358.600	15,737	940.413		
	T°C	cSt	m³/h	Re	pulses/m3	%spread	proved vol m ³
1	19.93	79.31	1967.900	22,654	940.010	0.055	38.20
2	19.94	79.25	1970.500	22,705	939.838		USM master
3	20.00	79.00	1974.100	22,809	940.353		

Test 3.4 Test setup Upstream Spare/ Meter B/ Downstream Spare

	T°C	cSt	m³/h	Re	pulses/m3	%spread	proved vol m ³
1	19.93	79.31	147.900	1,703	940.319	0.307	10.06
2	19.98	79.08	147.800	1,708	939.321		Uni
3	19.97	79.14	148.300	1,706	942.201		
	T⁰C	cSt	m ³ /h	Re	pulses/m3	%spread	proved vol m ³
1	20.03	78 85	447 200	5 176	940 404	0 172	10.06
2	19.93	79.20	446 900	5 142	940 860	02	Uni
3	19.98	79.50	446.800	5.136	939.243		•
				-,			
	T⁰C	- 04	m^{3}/h	De		0/ anno ad	proved vel m ³
	ΓC	CSI	111 /11	Re	puises/m3	%spread	proved vor m
1	19.91	79.41	754.700	8,671	940.636	0.072	31.88
2	19.93	79.32	755.700	8,690	941.078		USM master

				lechnical Pa	iper		
3	19.96	79.16	755.600	8,712	940.397		
	ToC	cSt	m3/h	Re	pulses/m3	%spread	proved vol m3
1	19.99	79.03	1358,200	15.689	940,157	0.059	37.20
2	20.02	78.92	1360.800	15,735	940.621		USM master
3	20.06	78.73	1358.700	15,757	940.067		
	T-0	- 01		D-		0/	
4		20.00	1050.000		puises/m3	%spread	proved vol m3
1	20.06	79.03	1358.200	22,845	938.883	0.085	38.30
2	20.04	78.92	1360.800	22,832	939.404		USIM Master
3	20.07	/8./3	1358.700	22,909	939.680		
Test	3.5	Test Set	up Upstrea	m 2/ Meter B / Dow	nstream 2		
	Т°С	cSt	m³/h	Re	pulses/m3	%spread	proved vol m ³
1	20.17	78.22	146.300	1,694	939.801	0.011	10.06
2	20.11	78.50	146.100	1,699	939.902		Uni
3	20.04	78.79	146.200	1,708	939.834		
	Т°С	cSt	m³/h	Re	pulses/m3	%spread	proved vol m ³
1	20.05	78.76	441.200	5,122	938.626	0.095	10.06
2	20.05	78.77	441.900	5,124	939.521		Uni
3	20.04	78.80	441.200	5,117	939.124		
	Т°С	cSt	m³/h	Re	pulses/m3	%spread	proved vol m ³
1	20.04	78.81	756.300	8,756	940.699	0.042	31.88
2	20.04	78.80	756.000	8,752	940.820		USM master
3	20.05	78.78	756.200	8,754	941.091		
	_		2				2
	T°C	cSt	m³/h	Re	pulses/m3	%spread	proved vol m ³
1	20.02	78.91	1358.600	15,717	940.174	0.083	37.20
2	20.03	78.85	1357.600	15,731	939.454		USM master
3	20.07	78.68	1359.900	15,778	940.232		
			2				-
	T°C	cSt	m³/h	Re	pulses/m3	%spread	proved vol m ³
1	20.11	78.51	1968.600	22,902	939.712	0.013	38.30
2	20.08	78.66	1969.000	22,861	939.798		USM master
3	20.07	78.70	1970.200	22.866	939.680		

chnical D

Test Setup Upstream Spare/ Meter C/ Downstream Spare Test 3.6

	Т°С	cSt	m³/h	Re	pulses/m3	%spread	proved vol m ³
1	19.95	79.22	146.700	1,690	940.657	0.067	10.06
2	20.00	79.00	146.700	1,695	940.031		Uni
3	20.01	78.95	146.400	1,693	940.128		
4	19.95	79.19	146.600	1,690	940.541		

	Т°С	cSt	m³/h	Re	pulses/m3	%spread	proved vol m ³
1	20.02	78.88	421.500	4,871	939.733	0.382	10.06
2	19.99	79.04	420.800	4,861	940.117		Uni
3	19.98	79.06	420.700	4,856	940.531		
4	20.02	78.91	421.700	4,866	942.412		
5	20.04	78.84	421.700	4,971	942.498		
6	19.97	79.11	421.900	4,855	942.703		
7	19.98	79.09	421.300	4,856	941.414		
8	19.99	79.03	421.700	4,858	942.701		
9	19.98	79.11	421.700	4,850	943.322		
	Т°С	cSt	m³/h	Re	pulses/m3	%spread	proved vol m ³
1	19.98	79.07	756.300	8,729	940.168	0.031	31.90
2	91.94	79.26	756.000	8,703	940.223		USM master
3	19.91	79.37	756.200	8,681	939.932		
				· ·			
	T⁰C	cSt	m ³ /h	Po	nulses/m2	%enread	proved vol m^3
1	10.08	79.07	756 300	8 720	0/0 168	03preau 0.031	31.90
2	Q1 Q/	7026.00	756.000	8 703	940.100	0.001	USM master
2	10 01	7920.00	756 200	8 681	030 032		
0	10.01	10.01	100.200	0,001	000.002		
	T ⁰ O	O /	3/1	_		o/ .	
	1°C	cSt	m ² /h	Re	pulses/m3	%spread	proved vol m°
1	19.95	79.23	1358.800	15,652	940.451	0.044	37.20
2	19.98	79.07	1357.100	15,671	940.034		USIVI master
3	19.99	79.03	1357.600	15,684	940.113		
	Т°С	cSt	m³/h	Re	pulses/m3	%spread	proved vol m ³
1	19.94	79.26	1960.800	22,582	940.293	0.029	38.30
2	19.97	79.11	1960.000	22,611	940.457		USM master
3	19.97	79.14	1958.400	22,591	940.180		