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1 INTRODUCTION 

 

The current economic challenges facing the upstream oil and gas sector has driven 

an urgent need to reduce costs and improve efficiency.  A reduction of operating 

costs may be achieved through the extension of the calibration intervals.  The 

maintenance strategies associated with fiscal and custody transfer measurement 

systems have traditionally been based on a ‘time-based’ approach (maintenance 

activities are scheduled at fixed intervals), without much consideration to past 

equipment performance and the introduction of ever more intelligent diagnostic 

capabilities of modern instrumentation.  However, custody transfer, fiscal and 

allocation metering are essentially the cash registers of the company and their 

performance must be assured to minimise financial exposure.  Similarly, 

complying with EU regulation for the monitoring, reporting and verification of 

greenhouse gas emissions requires the operators to have in place a measurement 

plan defining the calibration and maintenance regime required in order to meet 

the specified uncertainty levels for activity data for the applied tiers. 

 

It is this drive, to reduce costs, whilst maintaining control of the measurement 

uncertainty that has resulted in the Oil & Gas Authority (UK) to strongly urge 

operators to consider abandoning the traditional time-based maintenance in 

favour of a ‘risk-based’ or ‘condition-based’ maintenance, or combination of both 

[3].  It is suggested that a risk-based approach to maintenance, as outlined in 

section 5.2.5 of the current issue of the DECC Measurement Guidelines [1], 

should be the default methodology. 

 

The impact of measurement bias is proportional to the time over which it exists 

without correction.  The effect can be eliminated by calibration and adjustment at 

appropriate intervals, however, the determination of calibration intervals is a 

complex mathematical and statistical process requiring accurate and sufficient 

data taken during the calibration process [7].  There is no universally applicable 

single best practice and thus there is a need for a better understanding of the 

mechanism required for the determination of an appropriate calibration interval.  

There are very few official documents available which provide guidance on 

establishing the optimal calibration interval [2], [4]. 

 

This paper details the application of a risk-based approach to determine the 

optimal calibration interval. 

 

Section 2 covers the concept of the risk-based approach.  Section 2.1 introduces 

the term ‘total costs’ and provides insight as to how this can be established.  

Section 2.2 details the mechanism of measuring instrument ageing and 

introduces some models which can be used to define the evolution of the 

measurement bias over time.  Section 2.3 describes the calculation of financial 

exposure in terms of the ‘expected loss’, considering the likelihood and 

consequences of the measurement bias, and the ‘value flow rate’.  Section 2.4 

defines the measurement costs calculation.  The methodology is demonstrated on 

the example of a gas ultrasonic meter, pressure and temperature transmitters 

using real anonymised data in Section 3.  Section 4 provides conclusions. 
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2 RISK-BASED APPROACH CONCEPT 

 

For deployment of the risk-based approach [1] the following parameters have to 

be evaluated: 

 
• the value flow rate is the product of the relevant flow rate � and the 

relevant measured product value ��. 

 
• the estimate of a measurement error (measurement bias) ���� over a 

given period of time (refer to section 2.2). 

 

• the financial exposure �	 is the product of the expected loss and the value 

flow rate �� ∙ ��� accumulated over the period of time � during which the 

measurement error ���� may be expected to occur (refer to section 2.3).  

 
• the measurement costs �
 take account of the costs of ownership of a 

measuring instrument including calibration costs, repair costs, maintenance 

and metering service, depreciation and other costs (refer to section 2.4). 

 

The concept of the risk-based approach is to balance the measurement costs 

against the financial exposure, determined by estimating the likelihood and 

consequences of the measurement error over a given period of time. The balance 

equation can be expressed as follows: 

 
�	 = �
 (1) 

 

2.1 Total Costs 

 

For implementation of the risk-based approach the time-dependent total costs 

function is defined as the sum of financial exposure and the measurement costs 

as follows: 

 
�
��� = �	��� + �
��� (2) 

 

The optimal calibration interval will correspond to the minimum of the total costs 

function [6]. This can be calculated by differentiating equation (2) and setting the 

found derivative equal to zero, thus the optimal calibration interval is the one 

which satisfies the following condition: 

 

���	��� + �
����
�� = 0 (3) 

 
To solve the differential equation (3) for the optimal calibration interval �, the 

financial exposure and the measurement costs have to be defined as a function of 

time.  In many cases obtaining such an analytical solution to equation (3) is 

infeasible and thus the solution can be determined graphically by observing a 

minimum of the total costs function. 

 
This can be demonstrated by the following example.  Substituting �	��� from (11) 

and �
��� from (21) in (3): 

 
�
�� ��	���� ∙ � ∙ ����� + ��� ∙ ���

�� = 0	 (4) 
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Substituting 	���� from (12) in to equation (4) differentiates to: 

 

� ∙ √2√� ∙ �� + !" ∙ � + #" ∙ �$� + � ∙ % ∙ ��&' = 0	 (5) 

 
The optimal calibration interval � is the one which satisfies equation (5), but it is 

not possible to solve this equation in closed form, but it can be solved 

numerically. 

 

2.2 Measurement Bias 

 

Following the international vocabulary of metrology [5]: 

 

• systematic measurement error is the component of measurement error 

that in replicate measurements remains constant or varies in a predictable 

manner and can be known (and be corrected) or unknown (considered as 

random). 

 

• random measurement error is the component of measurement error that in 

replicate measurements varies in an unpredictable manner, which can be 

evaluated with the help of probability theory. 

 

• instrumental drift or ‘drift error’ is the continuous or incremental change 

over time in indication, due to changes in metrological properties of a 

measuring instrument.  Instrumental drift is related neither to a change in a 

quantity being measured nor to a change of any recognized influence 

quantity, but related to an interaction of a measuring instrument with an 

operating environment and this process is defined in the paper as ‘ageing’.  

Ageing does not depend on whether a measuring instrument is in operation or 

in storage.  The drift error can be corrected at a given time and then again 

starts to age going forward from this point, thus repeated corrections are 

required over a measuring instrument life time.  The rate of ageing depends 

on a manufacturing process, used materials and operating temperature of a 

measuring instrument. 

 

 

Figure 1 – Measurement Bias 
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The systematic and random errors are characteristics of a stationary random 

process, but the drift error is characteristic of a nonstationary random process 

and varies continuously with time.  In reality all these three types of errors are 

combined in the form of a seamless nonstationary random process shown on 

Figure 1 and within this paper its estimate is defined as a function of time using 
the term of measurement bias ∆���.  Note that the measurement bias term is 

broadened in comparison with the definition given in [5]. 

 

A measuring instrument after calibration can be characterized over its 
measurement range by the relation between the quantity � and the measurement 

bias ∆���.  Figure 2 shows a one-to-many relation and the width of the strip 

provides a measuring instrument uncertainty which is supposed to be within the 
maximum permissible limits )∆*.  After initial calibration the relation tends to be 

as graph a) shows.  Over the period of time � the joint action of the above 

mentioned errors causes an additive and multiplicative shift in relation as graph 

b) shows.  The additive shift can be corrected by zero adjustment as graph c) 

shows but it has to be kept in mind that with zero adjustment expands the width 

of the strip.  The multiplicative shift reflects the presence of the drift error and 

graph c) shows the most common situation for all subsequent calibrations.  

Consequently, it is more likely that a measuring instrument uncertainty exceeds 

the maximum permissible limit towards the end of its measurement range with 

half of all instruments failing calibration at these points [11]. 

 

Figure 2 – Measurement Bias 

Along with predictable calibration failure, that is those where the measurement 
bias ∆��� exceeds the permissible limits )∆* due to drift error, unexpected 

calibration failure may also occur.  As shown in [11] only 5 % of all calibration 

failures can be classified as unexpected and will not be considered in the present 

paper. 

 

The measurement bias can be defined by several mathematical models based on 

a hypotheses of the continuous changing or ageing of a measuring instrument in 

the process of its operation or storage. 

 

In general, the exponential model can be used and the measurement bias over 

the measuring instrument lifetime may be written in terms of time (an instrument 

age, years) as follows: 

 

∆��� = ∆ + ∆+ ∙ , 
# ∙ �-.∙/ 0 1� (6) 
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where ∆  is the measurement bias defined at initial calibration (� = 0), ∆+= ∆* 0 ∆  
is the difference between the measurement bias defined at initial calibration and 
the maximum permissible limit, ,  is the calibration failure frequency, # is the 

acceleration of the measuring instrument ageing. 

 
Substituting function -.∙/ = 1 + # ∙ � + �# ∙ ��$ 2⁄ + �# ∙ ��3 3⁄ +⋯ by first three terms of 

its expansion, equation (6) can be approximated by a quadratic equation as 

follows: 

 
∆��� = ∆ + ! ∙ � + #∆ ∙ �$ (7) 

 

where  ! = ∆+ ∙ ,  is the velocity of the measuring instrument ageing (%/year),  

#∆ = �∆+ ∙ , ∙ #� 2⁄  is the absolute acceleration of the measuring instrument ageing 

(%/year2). ! and #∆ can be defined on the basis of experimental data (calibration 

results over a number of years) using least squares or any other suitable 

technique. 

 
In terms of the standard deviation � of the measurement bias, equation (7) can 

be expressed as follows: 

 
���� = � + !" ∙ � + #" ∙ �$ (8) 

 

where �  is the standard deviation at initial calibration (� = 0), !" and #" are the 

velocity and acceleration of the standard deviation which can be defined on the 

basis of experimental data (calibration results over a number of years). 

 

If the calibration failure frequency is higher at the beginning of the measuring 

instrument life time and lower at the end as graph a) on Figure 3 shows, then the 

acceleration of ageing is a negative value. And vice versa, if the calibration failure 

frequency is increasing towards the end of the measuring instrument life time the 

acceleration of ageing is a positive value as graph b) on Figure 3 shows.  With 
every adjustment at a time �6 the measurement bias is set to the value close to 

initial calibration ∆  but it continues to deviate following its ageing curve and 

showing the nature of the instrumental drift. 

 

Figure 3 – Exponential Ageing Model 

If the calibration failure frequency is roughly the same over a measuring 

instrument life time, then the linear mathematical model (# = 0) describing the 

measurement bias behaviour can be assumed and equation (7) is reduced to: 
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∆��� = ∆ + ! ∙ � (9) 

 

The measurement bias behaviour defined by the linear model is shown on Figure 

4. In this case the calibration interval will remain constant over the measuring 

instrument life time. The linear model is referred to in [8] for optimal calibration 

interval determination. 

 

Figure 4 – Linear Ageing Model 

Defining the errors on the grounds of their frequency (drift error – lower 

frequency, random error – higher frequency) refers them to different regions of 

the frequency spectrum and specifies the spectral properties of the measurement 

bias.  It allows the prediction of the ageing peak maximum of a measuring 

instrument as a maximum of the measurement bias logarithmical spectrum [11] 

defined by the following function: 

 

7��� = 876$ + 2 ∙ ! ∙ � ∙ -.∙/ ∙ 976 + !
# ∙ �-.∙/ 0 1�: (10) 

 
where 76 = �6$ ;<��6 �⁄ �⁄  is the value of the logarithmical spectrum at a particular 

time moment �6, �6 is the standard deviation of the measuring instrument. 

 

Summarising the models described in this section it should be noted that the 

linear model (9) facilitate the prediction of the measurement bias in the period 

from 1 to 5 years, the exponential model (6) in the period from 1 to 100 years 

and the logarithmic spectrum model may be used to predict the measurement 

bias behaviour in the range from 1 second to 100 years.  The models can show 

good results if at least 5 calibration results are available, thus sufficient as-found 

and as-left data have to be available for a multiple of instruments of the same 

type.   

 

2.3 Financial Exposure 

 

The consequences of the measurement bias can be determined by a loss function 

and in conjunction with the likelihood of the measurement bias to occur, the 

expected loss can be calculated as detailed in Section 7. 

 

The expected loss may include a penalty due to failure to deliver an agreed 

amount of product or an incorrect evaluation and forecasting of product. 

 

The consequences of the measurement bias grow with time, the longer calibration 

interval the higher the expected loss. The accumulated product of the expected 
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loss and the value flow rate over the period of time � between two subsequent 

calibrations defines the financial exposure as follows: 

 

�	�� = �� = � 	���� ∙ � ∙ ����
=

 
 (11) 

 
where � is the number of days between two subsequent calibrations, � is the 

product flow rate per day, �� is the product value per flow rate unit.  The 

financial exposure is expressed in currency units. 

 

Assuming the exponential model (8) of the normally distributed measurement 

bias and absolute loss function (29), the expected loss defined by equation (32) 

is expressed in terms of � as follows: 

 

	���� = � ∙ √2√� ∙ �� + !" ∙ � + #" ∙ �$� (12) 

 
where �  is the measuring instrument standard deviation defined following the 

initial calibration. 

 

Equation (12) allows the expression of the financial exposure in the following 

form: 

 

�	�� = �� = � � ∙ √2√� ∙ �� + !" ∙ � + #" ∙ �$� ∙ � ∙ ���� =
=

 
= 	� ∙ �� ∙ � ∙ � ∙ √2√� ∙ �� +

1
2 ∙ !" ∙ � +

1
3 ∙ #" ∙ �$� 

(13) 

 

2.4 Measurement Costs 

 

The measurement costs include capital and operating expenditures and the 
annual measurement costs �
 (£/year) are calculated as follows: 

 
�
 = >�	? + 	� ∙ 
��	? (14) 

 
where >�	? (£/year) is the operating expenditures, 	� (1/year) is the efficiency 

factor of capital expenditures, 
��	? (£) is the capital expenditures. 

 

The operating expenditures calculation can be formularized as follows: 

 
>�	? = 
#;
 + @-A
 + 7#;
 + B-A
 + �C
 (15) 

 
where 
#;
 (£/year) is the calibration costs, @-A
 (£/year) is the minor repair or 

servicing costs, 7#;
 (£/year) is the costs associated with the workforce 

(engineers and technicians assuring trouble-free operation of measuring 
instruments) salary, B-A
 (£/year) is the depreciation (allocation of an assets cost 

to periods in which the assets are used) costs, �C
 (£/year) is the electrical 

energy consumption and processed materials supply costs. 

 
The calibration costs 
#;
 may include but not limited to: 

 

• calibration at an accredited laboratory,  
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• attendance to witness a calibration by manufacturer’s and operator’s 

engineers, 

• expenses related with the attendance,  

• transportation of the measuring instrument to a calibration laboratory and 

back, 

• removal and replacement of the measuring instrument, 

• scaffolding over meter stream to allow removal and replacement, 

• lagging removal and replacement, 

• updating records 

 

The minor repair or servicing costs are calculated as follows: 

 
@-A
 = � ∙ @�
 + �D� (16) 

 
where � (hours/year) is the average time spent for repair or service, @�
 (£/hour) 

is the repair personnel costs, �D� (£/year) is the average cost of replaced parts. 

 

The metering personnel salary costs are calculated as follows: 

 

7#;
 = 12 ∙E��
 ∙ F (17) 

 
where ��
 (£/month) is the metering personnel costs, F is the personnel 

workload factor showing a fraction of time spent for the particular measuring 

instrument, 12 (month/year) is the constant. 

 

The depreciation costs are calculated as follows: 

 
B-A
 = FG ∙ �
 (18) 

 

where FG (1/year) is the depreciation coefficient defining the period of the 

metering instrument life time, �
 (£) is the measuring instrument purchase costs. 

 

The electrical energy consumption 	<
 (£/year) and processed materials supply 

costs �7
 (£/year) are calculated as the sum of two: 

 
�C
 = 	<
 + �7
 (19) 

 

The capital expenditures calculation can be formularized as follows: 

 

��	? = FHI ∙ �
 + FJII ∙ K

 + FLGI ∙ @B
 (20) 

 
Where FHI, FJII and FLGI are the coefficients defining the part of the costs 

associated with the measurement of the specified process parameter and 

applicable if the measuring instrument is capable to measure more than one 
parameter, �
 (£) is the measuring instrument purchase costs, K

 (£) is the 

installation and commissioning costs, @B
 (£) is the research and development 

costs which include but not limited to: 

 

• development of measurement, calibration and maintenance procedures, 

• evaluation of uncertainty and obtaining of specified approval, 

• upgrade and development of data control system and related software. 
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The estimate of the installation and commissioning costs is assumed as 20 % of 
the measuring instrument purchase costs or K

 = 0.2 ∙ �
. The estimate of the 

coefficients in (20) is assumed as 1/<	, where < is the number of process 

parameters the measuring instrument is capable to measure and control. 

 

Considering the nature of the measurement costs nonlinearly decreasing with the 

calibration interval extension it can be approximated by a power function as 

follows: 

 
�
��� = � ∙ �� (21) 

 

where � and B are the parameters of the approximation function which can be 

obtained using the least squares technique or any other suitable technique. 

 

 

3 OPTIMAL CALIBRATION INTERVAL CALCULATION EXAMPLE 

 

For illustration of the aspects covered in the paper let us consider a gas metering 

system incorporating an ultrasonic flow meter, pressure and temperature 

transmitters.  

 
The mass flow rate, �+ (kg/h), is calculated as follows: 

 
�+ = �O ∙ P1 + F= ∙ ��# 0 �#Q.R�S ∙ P1 + FH ∙ �� 0 �Q.R�S ∙ T (22) 

 

where  �O (m3/h) is the measured gross volume flow rate,  F= is the material 

specific temperature coefficient of the meter body,  FH is the pressure coefficient 

of the meter body,  �#Q.R and  �Q.R are the calibration absolute temperature and 

pressure respectively,  T = U∙H
V∙L∙= (kg/m3) is the flowing density of the gas,  � is the 

molar mass,  � is the absolute line pressure,  W is the compressibility factor,  @ is 

the gas constant,  �# is the absolute line temperature. 

 

As the first step the measurement bias as a function of time is determined on 

the basis of available calibration data (refer to section 8) for the ultrasonic flow 

meter, pressure and temperature transmitters with no considerations of zero and 

span adjustments.  The statement in section 2.2 that in 50 % of all cases the 

measurement bias exceeds the maximum permissible limit towards the end of the 

measurement range is proved by the results.  Thus for the measurement bias 

development the following calibration points are considered: 2800 m3/h, 90 barg 

and 40 ⁰C. 

 

The exponential model as per equations (7) and (8) is used for the measurement 

bias determination. For the ultrasonic meter the ageing velocity is defined as 

positive value and the acceleration as negative value.  The opposite situation was 

observed with pressure and temperature transmitters, but it should be noted that 

calibration results were only available for a period of two years, further data is 

required to establish a more reliable ageing model. 

 

The second step supposes the calculation of the financial exposure using 

equation (13) and assuming the normally distributed measurement bias and 

absolute loss function.  The following parameters were used for evaluation: 

 

• natural gas is the fluid type 
• 0.41 £/thm is the product value �� 



34th International North Sea Flow Measurement Workshop 

25-28 October 2016 
 

Technical Paper 
 

10 

• 164,038.0 thm /day is the product flow rate � 

• sensitivity coefficient on the basis of equation (22) is calculated as � = 1 for 

ultrasonic flow meter, � = 0.99 for pressure transmitter and � = 0.03 for 

temperature transmitter. 

 

The third step specifies the measurement costs calculation and in the current 

example operating expenditures (15) are limited by calibration and depreciation 

costs but the capital expenditures are defined by equation (20). 

 

The last step directs us to balance the calculated measurement bias and 

measurement costs by searching the minimum of the total costs function defined 

by equation (2).  Defining the values of the total costs function by varying the 
variable � in the range from 0 to 100 months and mapping it on the graph allows 

the determination of the optimal calibration interval corresponding to the 

minimum of the total costs function. 

 

The total costs function minimum was identified at the level of 14 months for the 

ultrasonic flow meter (the current calibration interval is 12 months) as shown on 

Figure 5. 

 

The total costs function minimum was identified at the level of 5 months for the 

pressure transmitter (the current calibration interval is 3 months) as shown on 

Figure 6. 

 

The total costs function minimum was identified at the level of 13 months for the 

temperature transmitter (the current calibration interval is 2 months) as shown 

on Figure 7. 

 

 

Figure 5 – Total Costs Function for Gas Ultrasonic Flow Meter 
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Figure 6 – Total Costs Function for Pressure Transmitter 

 

 

Figure 7 – Total Costs Function for Temperature Transmitter  
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4 CONCLUSIONS 

 

The present paper details a risk-based approach to the maintenance of measuring 

instruments determining the optimal calibration interval.  Each parameter of the 

risk-based concept is analysed separately, in particular, the models allowing the 

definition of the measuring instrument ageing process and the loss functions 

modifying the expected loss and consequently the financial exposure.  

 

A step-by-step methodology has been provided which specifies how to implement 

the proposed risk-based approach.  It has been shown on real data that the risk-

based approach can play an important role and provide an efficient tool for the 

optimization of maintenance resources. 

 

It is shown that the process of establishing an optimum calibration interval can be 

a complex endeavour requiring the use of mathematical and statistical processes 

and demanding a sufficient quantity of calibration data.  The development of a 

standardised suite of tools to perform the process can make the process simpler 

but still retain the mathematical rigour to provide confidence that the resultant 

calibration intervals are optimal from a financial exposure perspective and the 

total costs are minimised. 

 

In the current climate faced by the industry operators can obtain significant 

benefit by assessing the financial risk associated with an implemented 

maintenance methodology and therefore ensuring that the resultant financial 

exposure is properly understood. 

 

 

5 NOTATION 

 

The symbols defined and used within the section of the paper are not listed 

below. 

 
�, % Parameters of �
 

approximation 

� time 

# Ageing acceleration of 

measurement bias 

� Period of time between 

calibrations 
#" Ageing acceleration of 

standard deviation 

�
 Total costs 

#∆ Absolute acceleration � Determined quantity value  
� Sensitivity coefficient ! Ageing velocity of 

measurement bias 

��	? Capital expenditures !" Ageing velocity of standard 

deviation 
	� Efficiency factor of 
��	? Greek 
	� Expected loss ∆ Measurement bias 
�	 Financial exposure ∆  Measurement bias at initial 

calibration 
�
 Measurement costs ∆+ difference between ∆* and ∆   >�	? Operating expenditures ∆* Maximum permissible limit 

�� Product value �  Standard deviation at initial 

calibration 
7 Measurement bias 

logarithmical spectrum 

,  Calibration failure frequency 
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7 APPENDIX A 

 

A.1 Expected Loss Calculation 

 

There is a relationship between a measurement bias, ∆, and the associated 

change in the quantity value ∆� which can be formularized as ∆� = Y�∆�, where 

the function Y is known as a loss function (also known as a risk function).  A loss 

(or cost – “the price paid for inaccuracy”) will arise if the measurement error 

turns to be different from agreed value and the larger the measurement error the 

greater the shift in the determined parameter and the greater the loss. 

 

If the measurement bias remains constant or varies in a predictable manner, then 

the measurement bias is defined as systematic and the shift in the determined 

quantity value will have a particular sign.  In practice, corrections are applied to 

compensate for a known systematic measurement error, but unknown systematic 

measurement errors are considered to be random.  In this paper only unknown 

systematic and random measurement errors are considered and thus the shift in 
the determined quantity value ∆� is treated as a random variable as well. 

 

Ideally the loss function has to be minimised, but it is incorrect to find an 

extremum of the function of a random variable.  Instead, considering a large 
number of measurements a mean or expectation of the loss function Y�∆� can be 

minimised and an expected loss (a risk measure), 	�, may be written as: 

 

	� = 	PY�∆�S = � Y�∆� ∙ Z�∆�
[\

&\
�∆ (23) 

 
where Z�∆� is a probability density function of the measurement bias ∆. 

 

 

Figure 8 – Probability Density Functions 

Most frequently the measurement bias ∆ is normally distributed because its 

components have similar significance.  In practice, rectangular, triangular and U-

shaped distribution of measurement bias may occur.  Figure 8 shows probability 
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density function of these distributions, where � is a standard deviation of the 

measurement bias. 

 

In this paper, as the most common, the normal distribution will be considered 

with the probability density function written as follows: 

 

Z�∆� = 1
� ∙ √2� ∙ -

&�∆&+�]
$∙"]  (24) 

 

where ^ is the mean and � is the standard deviation of the distribution. 

 

There are three commonly used loss functions: squared, absolute and ‘0-1’. 

Additionally, the hybrid absolute function is also considered in the article and all 

of them are shown in Figure 9. Obviously, the expected loss will be calculated 

differently for each function as shown in the sections below. 

 

 

Figure 9 – Loss Functions 

 

A.2 Squared Loss Function 

 

The squared loss function (curve 1 on Figure 9) is commonly used in 

mathematical optimization when the relationship between the measurement bias 

and the quantity value is explicitly nonlinear.  The function that represents the 

squared loss is given by: 

 
Y�∆� = � ∙ ∆$ (25) 

 
where � hereinafter is a coefficient, representing the sensitivity coefficient of the 

determined quantity value to the measurement bias.  This is applicable to indirect 

measurements and elements of secondary instrumentation having an influence on 

the determined quantity. 

 

Then the expected loss is calculated by substituting from (24) and (25) to (23): 
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	� = � � ∙ ∆$ ∙ 1
� ∙ √2� ∙ -

&�∆&+�]
$∙"]

[\

&\
�∆ (26) 

 

Making the substitution of a variable _ = �∆ 0 ^� �� ∙ √2�	⁄  and considering that         

∆= _ ∙ � ∙ √2 + ^ and �∆= � ∙ √2 ∙ �_, then equation (26) can be expressed in terms 

of _ as follows: 

 

	� = �
√� � �_ ∙ � ∙ √2 + ^�$ ∙ -&`]

[\

&\
�_ =

= � ∙ �$ ∙ 2
√� � _$ ∙ -&`]

[\

&\
�_ + � ∙ ^$

√� � -&`]
[\

&\
�_

+ � ∙ � ∙ 2√2 ∙ ^
√� � _ ∙ -&`]

[\

&\
�_ 

(27) 

 

The third integral in equation (27) is equal to zero as the integral of an odd 

function over symmetric limits, the second integral is the Euler-Poisson 

(Gaussian) integral equal to √� and the first integrand can be integrated by parts 

with the result of √� 2⁄ .  Hence, the expected loss is given by: 

 

ab = � ∙ �$ ∙ 2
√� ∙ √�2 + � ∙ ^$

√� ∙ √� + 0 = c ∙ �de +fe� (28) 

 

If the known systematic errors are excluded from the measurement results the 

number and values of positive and negative errors remaining is balanced and the 
mean is equal to zero. Thus, hereinafter ^ = 0 is assumed.  

 

A.3 Absolute Loss Function 

 

The absolute loss function (curve 2 on Figure 9) is used when the relationship 

between measurement bias and the quantity value can be expressed in the form of 

piecewise linear function.  The function that represents the absolute loss is given 

by: 

 

 Y�∆� = � ∙ |∆| (29)

 

Then the expected loss is calculated by substituting from (24) and (29) to (23): 

 

	� = � � ∙ |∆| ∙ 1
� ∙ √2� ∙ -

&�∆&+�]
$∙"]

[\

&\
�∆ (30) 

 

Making the substitution of a variable _ = �∆ 0 ^� �� ∙ √2�	⁄  and considering that         

∆= _ ∙ � ∙ √2 + ^ and �∆= � ∙ √2 ∙ �_, then equation (30) can be expressed in terms 

of _ assuming for simplification ^ = 0 as follows: 

 

	� = �
√� � h_ ∙ � ∙ √2 + ^h ∙ -&`]

[\

&\
�_ = � ∙ � ∙ √2

√� � |_| ∙ -&`]
[\

&\
�_ (31) 
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The integral in equation (31) is equal to one as the integral of an even function 

with symmetric limits.  Hence, the expected loss is given by: 

 

ab = � ∙ � ∙ √2
√� ∙ 1 = c ∙ √e√i ∙ d (32) 

 

If the absolute hybrid loss function (curve 3 on Figure 9) is piecewise function 

defined by two sub-functions as follows: 

 

 Y�∆� = j 0, ∆< 0
� ∙ ∆, ∆≥ 0 (33)

 

Then the expected loss is calculated by substituting from (24) and (33) to (23): 

 

	� = � � ∙ ∆ ∙ 1
� ∙ √2� ∙ -

&�∆&+�]
$∙"]

[\

 
�∆ (34) 

 

Making the substitution of variable _ = �∆ 0 ^� �� ∙ √2�	⁄  the equation (34) can be 

expressed in terms of _ as follows: 

 

	� = �
√�� �_ ∙ � ∙ √2 + ^� ∙ -&`]

[\

 
�_ =

= � ∙ � ∙ √2
√� � _ ∙ -&`]

[\

 
�_ + � ∙ ^

√� � -&`]
[\

 
�_ 

 

(35) 

Hence the integration interval is half of the interval in equation (31), and the 

expected loss is given by: 

 

ab = � ∙ � ∙ √2
√� ∙ 12 +

� ∙ ^
√� ∙ √�2 = c ∙ � d

√e ∙ i +f
e� (36) 

 

Obviously, the expected loss evaluated using equation (36) is only half as large 

as the expected loss evaluated using equation (32).  In this case the loss occurs 

when the measurement bias deviates only in one direction and it means that the 

systematic measurement bias shall be greater than 0.66 ∙ � at the 90 % confidence 

level [11].  Assuming freedom from the known systematic errors ^ = 0 and the 

loss function slope # = 1, equation (36) takes on the form of the “risked mis-

allocation exposure” calculation equation presented in paper [9]. 

 

A.4 ‘0-1’ Loss Function 

 

The ‘0-1’ loss function (curve 4 on Figure 9) is used when the relationship 

between measurement error and the quantity value has a form of discontinuous 

change if the error is found outside of its permissible limits.  The function that 

represents the ‘0-1’ loss is given by: 

 

Y�∆� = o 0, 0∆*≤ ∆≤ ∆*
∆�*, |∆| > ∆*  (37) 
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where ∆* is a maximum permissible error, ∆�* is a deviation of the quantity value 

caused by error ∆*. 
 

Then the expected loss is calculated by substituting from (24) and (37) to (23) 

and assuming the even loss function: 

 

	� = � ∆�* ∙ 1
� ∙ √2� ∙ -

&�∆&+�]
$∙"]

&∆r

&\
�∆ + � ∆�* ∙ 1

� ∙ √2� ∙ -
&�∆&+�]

$∙"]
[\

∆r
�∆

= 2 � ∆�* ∙ 1
� ∙ √2� ∙ -

&�∆&+�]
$∙"]

[\

∆r
�∆ 

(38) 

 

Making the substitution of variable _ = �∆ 0 ^� �� ∙ √2�	⁄  the equation (38) can be 

expressed in terms of _ as follows: 

 

ab = ∆�* ∙ 2√� � -&`]
[\

∆r&+
"∙√$

�_ = ∆�* ∙ s-DZ�+∞� 0 -DZ �∆* 0^
� ∙ √2 �u

= ∆vw ∙ sx 0 yz{ �∆w 0f
d ∙ √e �u 

(39) 

 

where -DZ is the error function and -DZ�+∞� = 1. 
 

A.5 Conclusion 

 

In terms of relative expanded uncertainty | at a defined confidence level the 

expected loss can be expressed as shown in Table 1.  In practice, the most 

common is the confidence level of 95 %. 

Table 1 – Expected Loss in terms of Uncertainty 

Confidence 

Level 

Coverage Factor } 
(for Normal 

Distribution) 

Expected Loss 

Squared 

(25) 

Absolute 

(29) 

Absolute 

hybrid 

(33) 

68 % 1.0 1 ∙ � ∙ |$ 0.8 ∙ � ∙ | 0.4 ∙ � ∙ | 

90 % 1.6 0.39 ∙ � ∙ |$ 0.5 ∙ � ∙ | 0.25 ∙ � ∙ | 

95 % 2.0 �. e� ∙ c ∙ �e �. � ∙ c ∙ � �. e ∙ c ∙ � 

99 % 2.58 0.15 ∙ � ∙ |$ 0.31 ∙ � ∙ | 0.15 ∙ � ∙ | 

99.7 % 3.0 0.11 ∙ � ∙ |$ 0.27 ∙ � ∙ | 0.13 ∙ � ∙ | 

 

It is not shown in the paper but it should be noted that if the normal distribution 

is considered for the measurement bias without a good reason, then the 

calculated expected loss may differ from real value by 2 to 3 times [10].  Thus, 

prior to choosing a type of distribution the behaviour of the random variable 

(measurement bias) needs to be investigated. 

 

It has to be noted that the confidence level of 90 % has a unique property in that 

the coverage factor does not depend on the type of distribution and is equal to 
} = 1.6 or | = 1.6 ∙ �.  If the distribution is not known, it is recommended to report 

uncertainty at the 90 % confidence level [11]. 
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8 APPENDIX B 

 

 

Figure 10 – Ultrasonic Flow Meter Calibration Results 

 

 

Figure 11 – Pressure Transmitter Calibration Results 
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Figure 12 – Temperature Transmitter Calibration Results 

 


