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1 INTRODUCTION 
 
Fossil fuels will remain to provide a large fraction of the world’s energy needs in 
the decades to come.  As natural gas is a relatively clean fuel and because of its 
abundance, it is expected to be a major contributor.  However, virtually all gas-
wells produce not only gas, but also liquids, both hydrocarbon condensates as 
well as water.  The latter consists of condensed water and often also formation 
water. Such flows of gas and liquids are usually referred to wet-gas.  In this 
paper, we will use the term wet-gas for such flows where the Lockhart-Martinelli 
(LM) parameter is below 0.35 and the flow is not slugging or unstable (e.g. churn 
flow). 
 
Flow rate measurement of wet-gas streams with a dedicated multi-phase/wet-gas 
flow meter would be  beneficial as this is simpler and cheaper than the use of 
test-separators. 
 
We think the performance of such flow meters in general could improve 
significantly, but it would require a much better understanding of the physics 
governing the measurement process than is currently available in the public 
domain. This paper is intended to make a start by disclosing our models for 
horizontal and vertical Venturis. We hope this will inspire others to come forward 
with further contributions bringing our collective understanding to a higher level. 
 
 
2 THE BASIC EQUATIONS 
 
Differential pressure flow meters are based on the Bernoulli equation, which 
states that specific kinetic energy and pressure (specific static energy) are 
interchangeable: 
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Differential pressure flow meters are designed in such a way that the velocity of 
the fluid is changed, leading to a change in pressure. The differential pressure is a 
measure for the flow rate: 
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The actual gas volume fraction is defined as: 
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The superficial velocities are defined as: 
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The gas Froude number is defined as: 
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The liquid Froude number is defined as: 
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With the Lockart-Martinelli parameter defined as: 
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The overreading of a differential pressure flow meter in wet-gas is defined as: 
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It is possible to derive the overreading analytically under the assumption that the 
flow is either fully stratified or when it is a homogeneous mist flow in which the 
liquid is fully dispersed as small droplets.  The results are given below without 
derivation. These can be found elsewhere. The overreading in a stratified flow is: 
 

 LMgOverreadin += 1  (9) 

 
The correlation of Murdock[1] is based on this equation, but a constant was added 
to fit his experimental data better.  The overreading of a mist flow is: 
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Note that the overreading of the stratified flow can be rewritten as: 
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The overreading has been described in several correlations and we will discuss 
two of these here. The first is the correlation of Chisholm[2]. His correlation reads: 
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As Chisholm did the experiments, on which his correlation is based, at relatively 
low pressures and with air-water, it is likely that his flow regime was stratified 
entrained. So his value of 0.25 in the above equation, halfway between zero and 
0.5, seems not unrealistic. 
 
De Leeuw[3], having gathered a large set of experimental data up to higher 
pressures and gas Froude numbers and subsequently building on the above 
equations, modified it by introducing a parameter “n”: 
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In which n is taken as a function of the gas Froude number: 
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Both the correlations of Chisholm and De Leeuw predict the overreading in the 
limiting cases of LM ↓ 0 and the dense phase ρg ↑ ρl correctly.  An interesting 

aspect of the correlation of De Leeuw is that it predicts an overreading above the 
overreading for the homogeneous mist flow which, at first sight, seems to be the 
upper limit for the overreading.  We will park this question for the moment and 
come back to this issue later. We will first discuss the limitations of correlations. 
 
 
3 THE LIMITATIONS OF CORRELATIONS 
 
Correlations are basically mathematical curve fits through experimental data 
points.  Some correlations, like those of Chisholm and De Leeuw, use a basic 
equation for the phenomenon they want to curve-fit, whereas others, like the one 
of Steven[4], use equations which are not necessarily related to a basic equation. 
Although some speak of “models” in this case, this is incorrect as it is not based 
on physics.   
 
Strictly speaking, correlations are only valid within the range of the experimental 
data on which they are based and validated.  Therefore it is possible that 
correlations do not predict limiting cases correctly when these lay outside the 
range of the experimental data.  As stated before, the correlations of Chisholm 
and De Leeuw predict the limiting cases correctly and a requirement for 
correlations could be that these include the limiting cases for which the behaviour 
is known. 
 
However, a large problem with correlations is that these include a number of 
parameters to enable the use of the correlations with fluids with different physical 
properties. The selection of the parameters is educated guesswork and is often 
enforced by the limitation of the fluid properties which could be used during the 
experiments on which the correlation is based.  However, there is no guarantee 
that all essential parameters are included in the correlation.  In general, it is 
impossible to include all important properties in the experiments: the number of 
required data-points will simply become too large.  So unless a better 
understanding of the physics, which govern the measurement process, is 
obtained, no guarantee can be given that correlations give correct and accurate 
predictions when the physical properties of the fluids used in the application are 
different from those in the experiments (and they always will). As a consequence, 
a narrow fit in a tested range does not imply any accuracy in other ranges and or 
other fluids. 
 
Only when there is a good understanding of the governing physics, the essential 
physical properties can be revealed and it will become possible to predict the 
overreading in application with different conditions, e.g. pipe diameters, different 
β-ratios and different fluids.  Also, applications outside the range of the 
experimental data become more trustworthy, thereby greatly extending the 
possibilities to apply wet-gas flow rate measurement in practice. 
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To avoid the use of correlations this paper presents the models developed for a 
wet gas flow through a horizontal Venturi and through a vertical upward Venturi.  
Both models will be described in the sections below. 
 
 
4 THE EXTENSION OF THE BERNOULLI EQUATION 
 
The Bernoulli equation is only valid for systems with no energy loss. When energy 
losses do occur, correction term(s) need to be added.  This is illustrated by e.g. 
the orifice meter.  It is well known that the discharge coefficient of an orifice is 
roughly 0.6, which can be interpreted in the following way: 

 dBO ppp ∆+∆=∆
 (14) 

It can be remarked that (eq. 2) 

 ODB pCp ∆=∆ 2

 (15) 

Reworking the two equations above yields: 
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So with a discharge coefficient of 0.6, the contribution of the ideal Bernoulli 
equation to the differential pressure is 36% and 64% is generated by dissipation.  
 
This explains why the pressure recovery of an orifice is only minor.  A Venturi 
with a discharge coefficient of 0.995 thus has only 1% of the differential pressure 
generated by dissipation, so it is expected that its pressure recovery is 
significantly higher than that of an orifice.  However, in the divergent section, 
significant turbulence is generated, leading to additional dissipation.  Which is 
why the Venturi still has a noticeable total pressure loss, which depends on its 
construction. 
 
Therefore it is clear that, in order to describe the differential pressure of a Venturi 
in a wet-gas flow, a dissipation term needs to be added to the Bernoulli equation. 
Implicitly, the rising of the “n” value above 0.5 in the correlation of De Leeuw is 
the inclusion of such a dissipation term.  It does, however, not describe the size 
and the cause(s) of the dissipation.  The given that the “n” value can become 
larger than 0.5 and knowing that the total pressure loss ratio of a Venturi is in a 
wet-gas flow significantly higher than in a single phase flow, reveal that already 
energy is dissipated upstream of the throat pressure tap.  This will have to be 
included in the model. 
 
It is to be expected that the dissipation mechanisms in a horizontal and a vertical 
upward Venturi are different.  Because of the size limitation, it is not possible to 
include all the details and all the required equations into this paper. The crucial 
steps, however, will be described and discussed.  For more details, the authors 
can be approached.  As we do not have the possibilities to develop these models 
further on our own, we welcome any person or institution to bring this work 
further.  We can provide the current state of the development and may provide 
data-sets from tests under realistic conditions. 
 
 
5 MODELLING OF HORIZONTAL FLOW IN VENTURIS 
 
The modelling of the differential pressure inlet – throat is based on an extension 
of the Bernoulli equation and will include the contributions by the gas, the 
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dispersed liquid(s), dissipation terms and some smaller contributors.  This 
approach leads to the following equation: 
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Note that for the calculation of vg, Ag, vd, Alg, vlf and Alf the local hold-up is 
required.  Its calculation has been done by the authors, but this not included in 
this paper to limit its length. 
 
The challenge is to determine the different contributors to this equation under 
realistic conditions.  To indentify these, several parameters need to be known. 
Therefore, we will give a description of the wet-gas flow upstream and moving 
into the Venturi up to the throat pressure tap. 
 
Upstream of the Venturi, a partly entrained, partly stratified-wavy flow regime is 
maintained.  The energy of the moving fluids upstream of the Venturi is 
dependent on the entrained fraction.  Correlations for the entrained fraction can 
be found in literature[7], we used the Shell Vassiliadou relationship[5]: 
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and factor is: 
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and fsg is the friction factor, smooth pipe, turbulent flow, based on superficial gas 
velocity: 
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and Resg is: 
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Once the entrained fraction is determined, the energy of the moving fluids can be 
found using the quasi Lockhart-Martinelli parameter, derived in Appendix 1: 
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When the fluids move into the convergent section of the Venturi, the gas will start 
to accelerate.  Due to the inertia of the droplets, these will lag the gas.  This has 
two major consequences: the first is dissipation because of an increase in the 
velocity difference between the gas and the droplet, the second is an increase of 
the drag force on the droplet.  When the drag force exceeds the surface tension, 
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the droplet is no longer able to withstand the increasing force and it will break up 
into smaller droplets. 
 
In the calculation, this is approximated by the split of the droplet into two with 
identical sizes.  This phenomenon also explains why the Venturi acts like a nozzle 
and the average droplet diameter in the throat is smaller than upstream of the 
Venturi.  A major consequence of this description is that the surface tension is an 
important parameter, which now will be included. 
 
The accelerating gas also creates an increasing shear on the gas-liquid interface, 
which will enhance the entrainment of droplets itself.  The Vassiliadou relationship 
yields unrealistically high values for the entrained fraction, certainly at higher 
liquid loadings, as it is impossible to entrain so much liquid in the short time that 
the fluids stay in the convergent section of the Venturi.  However, no reference 
which describes these phenomena has been found the in the open literature, 
therefore, a novel correlation has been introduced, based on the SINTEF and 
CEESI data-sets: 
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Note that the entrainment rate has the dimension of m/s, in order to calculate the 
actual volumetric entrainment, the value needs to be multiplied by the surface 
area from which the entrainment takes place. 
 
The entrainment rate thus shows to be a shallow function of the ratio of the gas 
and liquid densities.  Although these assumptions are only an approximation of 
reality, we think that this is the best approach available at the moment, although 
we realise that future work might bring better relationships.  However, the 
complete model described here has been tested with experimental data from K-
lab with a different Venturi, a different β-ratio and different fluids and it 
performed very well. 
 
5.1 The Dissipation of the Gas Flow Around the Droplets 
 
The normalised dissipation energy Ndiss has two contributing components: 
 

 N + N = N srdgdiss  (25) 

The above described mechanisms enables the calculation of the contribution to 
the differential pressure by the Bernoulli effect of the gas, the entrained liquid 
and the liquid in the film and the dissipation due to the gas flow around the 
droplets.  However, the contributions caused by the dissipation due to the 
interfacial roughness, the increase in potential energy of the stratified liquid (the 
throat is at an elevated level) and the energy stored in the surface tension (in the 
throat more and smaller droplets are present) still need to be included. 
 
The drag force on the droplet is equal to: 
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The drag coefficient is found from: 
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in which Re is: 
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This is a well-known and often used correlation for spherical bodies and has been 
used here[6]. 
 
5.2 Other Contributors to the Differential Pressure 
 
It is assumed that the entrainment and deposition of the droplets upstream of the 
Venturi are in equilibrium and that at the entrance of the convergent section of 
the Venturi the droplets move with the gas velocity.  If they would not, the gas 
would exert a force on the droplet until they did.  This assumption does not take 
into account that the droplets have a limited "lifetime", i.e. are created with a 
velocity below the average gas velocity and are re-deposited in the liquid film 
after a certain time (which is probably random).  However, the entrained fractions 
in the pipe, upstream of the Venturi, are relatively low and therefore the error in 
the determination of the kinetic energy of the entrained liquid will be small.  On 
top of this, the kinetic energy of the moving fluids upstream of the Venturi is only 
a small term in the energy balance and hence has a small effect, except for a 
relatively large β-ratio (say > 0.7). 
 
The droplets which are entrained in the convergent section of the Venturi are 
given an initial velocity equal to the velocity of droplets already entrained. 
Although this is not completely realistic, it is a reasonable assumption and it 
simplifies the calculations.  Note that the surface of the liquid layer, from where 
the droplets are torn from the liquid film, has a velocity which is roughly twice the 
average velocity of the liquid film due to the linear velocity profile in the liquid 
film.  On top of that, the gas velocity close to the gas-liquid interface is lower 
than the average gas velocity, due to the friction at the gas-liquid interface.  
Thus, the velocity difference between the newly entrained droplets and the gas 
surrounding these, should therefore be in the same order of magnitude as that of 
the already entrained droplets.  This velocity difference is more important than 
the absolute velocity and in case it would be significantly larger, it would result in 
break-up of the droplets. 
 
The liquid film in the convergent section and the throat gives rise to a rough 
surface, which causes viscous dissipation in a similar way as in normal pipe flow. 
The surface roughness is taken as 0.085 m; m = liquid film thickness; the film is 
assumed to have a constant thickness across the circumference.  However, the 
contribution to the dissipation is small but increases with decreasing gas density. 
The reason is that at the lower gas densities the hold-up is higher and the 
entrained fraction is lower.  Both result in an increased surface roughness and 
thus friction factor. 
 
The surface tension of the droplets represents an amount of energy, which 
increases as the total surface of the droplets increases when the fluids move 
through the Venturi up to the throat.  The calculation of this contribution can be 
found in Appendix 3. 
 
When the liquid is lifted from the lower half of the pipe into the throat of the 
Venturi, the potential energy of the liquid increases.  This energy is delivered by 
the flow, thus increasing the pressure change.  The liquid will -in the majority of 
the cases- be partly stratified.  The potential energy of the liquid which stays in 
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the liquid layer at the bottom will increase due to the higher level of the throat. 
The potential energy of the liquid, entrained into the gas, increases even more as 
it is lifted from the liquid layer. 
 
This results in relatively more significant contributions at the low gas Froude 
numbers.  At the lowest gas Froude number, the liquid is damming up against the 
throat, which means that the raise in potential energy is already partly completed 
by the time the liquid reaches the upstream pressure tap as is illustrated in fig. 1. 

 
Figure 1: The damming of the liquid up against the throat. Note the compression 

of the horizontal scale to elucidate the effect. 
 
Note that due to this liquid build-up, the gas velocity at the upstream pressure 
tap is higher than without it.  So far, this phenomenon is not included in the 
model and could give rise to an over-prediction of the differential pressure at low 
gas Froude numbers. 
 
 
6 MODELLING OF UPWARD FLOW IN VENTURIS 
 
In a vertical upward wet-gas flow, the gas is the “continuous phase”.  The liquids 
are partly dispersed as droplets in the gas, partly moving as a film at the wall. 
Due to turbulence in the gas core, droplets will be deposited in the film at the wall 
and droplets will be torn off the wavy gas-liquid interface.  Due to gravity, the 
liquids will move slower than the gas as the gas has to lift the liquids against the 
gravitational force. We will refer to this velocity difference as the “slip velocity”. 
 
The realization of the inlet-throat differential pressure has a number of different 
contributors: 
 
• The Bernoulli dP caused by the gas 
• The Bernoulli dP caused by the liquid droplets 
• The Bernoulli dP caused by the liquid film 
• The dissipation of the gas flow around the droplets 
• The dissipation due to viscous forces in the liquid film 
• The increase in potential energy of the liquid 
• The energy, stored in the surface tension of the droplets 
 
The modeling will require a description to quantify the different contributions. 
Note that some contributions are irreversible, which means that the total pressure 
loss (ratio), the outlet-inlet differential pressure, will be larger than in a single-
phase system. The modeling will be described below in several separate steps. 
 
6.1 The Dissipation of the Gas Flow Around the Droplets 
 
The droplets are lifted against gravity by the friction of the gas flow around them. 
However, there are some limitations.  The first question is the maximum droplet 
diameter which will occur in such a flow under the given conditions. 
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Basically, there are three forces acting on the droplet: the drag force of the gas 
flow around the droplet, the gravitational force and the surface tension.  With 
increasing droplet diameter, the gravitational force increases rapidly (with the 
third power of its diameter), which has to be balanced by the same increase in 
the drag force.  But this force is acting on the surface of the droplet and it is not 
hard to see that at a given diameter the surface tension is no longer able to 
maintain the integrity of the droplet: the drag force simply tears it apart.  Using 
this reasoning, we can predict the maximum size of the droplet: it is the diameter 
at which the surface tension balances the drag force (which balances the 
gravitational force). 
 
The gravitational force, acting on the droplet, consists in itself on two forces: one 
is the gravitational force, caused by its mass and the Earth’s gravitational 
acceleration, the second is the hydrostatic force because the droplet is immersed 
in gas phase. It is not hard to combine these two and the result (net) 
gravitational force is: 

 
F d gg l g= −

π
ρ ρ

6
3 ( )

 (29) 

The drag force, acting on the droplets is proportional to the cross-sectional area 
of the droplet, the kinetic energy of the gas phase, relative to the droplet velocity, 
i.e. the slip velocity and the so-called drag coefficient. In equation; 
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We will use the same drag coefficient as in the model for the horizontal Venturi. 
 
The surface tension creates a pressure differential with the surrounding gas, 
which is described for a stationary (relative to the gas) spherical droplet given by 
the Young-Laplace equation: 

 
∆ p
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The force can be found by multiplying the pressure differential by the surface 
area, but we are not talking about a stationary droplet, but a droplet which is 
moving through the gas phase.  Also, we are looking at a droplet which is at its 
maximum diameter under such conditions, i.e. at the verge of break-up. 
Therefore we need to take into account that the surface tension is counteracting 
the drag force, which acts on the lower half of the droplet and that the droplet, 
under these conditions, is not spherical anymore, but elongated. Therefore, the 
Young-Laplace equation cannot be used directly and a different radius has been 
chosen, related to the lower half of the surface area and the volume related to it 
to compensate for the above mentioned effects: 
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This radius represents the curvature at the “tip” of the ellipsoid, we will use for 
the radius at middle of the ellipsoid (where the drag force is the largest and will 
split the droplet as twice this value. The force subsequently becomes 
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Equating this with the drag force yields: 
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or  
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which is the equation used to determine the maximum diameter of the droplet 
under dynamic conditions.  We will also use this equation to determine the 
locations of break-up of droplets in the accelerating flow in the convergent section 
of the Venturi, which will be discussed below. 
 
The relation between vr and d can be found by balancing the equations for the 
drag and gravitational forces and solving Cw from these: 
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from which follows: 
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Multiply both sides with Re2: 
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Substituting the correlation for Cw in the above equation yields: 
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Using this quadratic equation, Re can be solved directly at a given diameter and 
thus vr, yielding starting values for the determination of the maximum diameter 
using e.g. the Newton-Raphson technique. 
 
A correction is applied for the elongated shape of the droplets. Under the 
assumptions, described above, the mass of the droplet is twice of that of a 
spherical droplet with the same radius of curvature at the bottom. 
 
The dissipation around the droplet is calculated in the same way as in the model 
for a horizontal Venturi as described in Appendix 2.  This algorithm is also used in 
the convergent section of the Venturi.  The contribution to the differential 
pressure is found by multiplying the energy dissipation for each (initial drop) with 
the number of drops per m3. However, two problems arise at this point: 
 
• not all the liquid is entrained as droplets as a part is flowing in the liquid film 

at the wall, so the “entrained fraction” needs to be determined and 
• the droplets move slower than the gas, which needs to be corrected for. 
 
The first is rather trivial, the second less, but it can be understood by looking at a 
situation in which the gas velocity is so low that it can not lift the droplets (i.e. vg 
= vr). In such a case, the dissipation for each droplet would be infinite, as the 
dissipation will continue, but the droplet will never pass the throat tap. 
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There is a further complication as the gas velocity is higher than the superficial 
gas velocity.  But is also higher than the superficial gas velocity divided by the 
gas volume fraction (GVF), because that would only be valid if gas and liquid 
would move with the same velocity.  But because the liquid lags the gas, a 
correction needs to be made by the hold-up or slip between the phases.  Note 
that because of the high GVF in wet-gas flows (>95 %), the corrections are not 
very large, so we can use some approximations: 
 
• we will assume that all liquid is entrained as droplets 
• we will use the superficial gas velocity to do the initial calculation of the slip 

velocity 
 
Using these approximations, the gas velocity can be calculated using: 
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If desired, one can use this value as a first estimate for the actual gas velocity 
and subsequently use this value to get a better estimate for the gas velocity by 
replacing vgs / vd by vg / vd as this yields a more accurate result.  However, even 
at 95% GVF and a gas velocity only three times the slip velocity, the second 
iteration is only 0.2% different from the first value, which is a negligible 
difference as in most other cases the correction will even be smaller. 
 
The contribution of the dissipation to the differential pressure inlet-throat of the 
Venturi thus becomes: 
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The number of droplets per cubic meter of gas can be found directly from the 
liquid volume fraction (LVF) and the droplet diameter: 
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6.2 The Liquid Film Modeling 
 
To model the liquid, flowing in the film at the wall, is the most difficult part of the 
wet-gas modeling.  Therefore, we will first give a qualitative description of the 
phenomena, which take place and subsequently describe how these can be 
quantified. 
 
There are four forces acting on the liquid, flowing in the film: 
 
• the gravitational force 
• the shear force, caused by the gas flowing along the gas-liquid interface 
• viscous forces, caused by the velocity gradient in the liquid film, a 

consequence of the stationary wall. 
• Pressure forces due to the Kelvin-Helmholtz phenomenon. 
 
The gravitational force will tend to induce a downward flow in the liquid, which is 
counteracted by the shear of the upward moving gas at the gas-liquid interface. 
To get a feeling for these forces, let us write down the basic equations under the 
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assumption that the thickness of the liquid layer is very small, compared to the 
internal pipe diameter. The gravitational force will then be: 
 

 
F D D L gg lf l= π ρ. . . . .

 (43) 

 
The shear force can be calculated using the pressure drop for pipe flow: 
 

 
∆ p f

L

D
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1

2
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 (44) 

From this, the wall shear stress can be derived using the balancing of the wall 
shear stress and the pressure drop: 
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from which follows: 

 
τ ρi g g i

f
v v= −

2
2( )
 (46) 

So the problem boils down to the calculation of the Fanning friction factor f.  In 
literature, the Colebrook correlation[8] is often used.  It is an implicit correlation, 
which, however, gives good results.  The Colebrook correlation reads: 
 

 

1
2

37

2 51
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D= − +.log (

( )

.

.

Re
)
 (47) 

In this case, the waves on the gas-liquid interface act as the surface roughness 
for the gas flow.  We will assume that the amplitude of the waves is 0.75 times 
the average thickness of the liquid layer, so the peak-to-peak value is 1.5 times 
the average thickness and we will use this value for the surface roughness k. 
Basically, the internal diameter should be corrected for the reduction due to the 
liquid film, which has a double influence on the Reynolds number: both by the 
internal diameter and the gas velocity.  But because the Fanning friction factor is, 
at higher Reynolds number, virtually independent of the Reynolds number, we 
can use the “dry” internal diameter and the superficial gas velocity. 
 
The Colebrook correlation can be solved by iteration.  Usually, within 4 or 5 steps, 
the result has converged to its final value.  This is simpler than using the Newton-
Raphson method and about as fast.  Using the thus obtained value of the Fanning 
friction factor, we can calculate the maximum liquid film thickness which can be 
held up by the interfacial shear stress against gravity.  By assuming that vi is 0 
(zero) both the interfacial wall shear stress and the gravitational force can be 
calculated.  Using the Newton-Raphson method, the maximum thickness can be 
calculated.  Good starting values are e.g. 0.1, 1 and 5 mm thickness for the liquid 
film. 
 
The shear on the interface, however, can tear off droplets from the liquid film.  
We will model this as follows: 
 
• The wavelength of the waves on the gas-liquid interface is proportional to the 

amplitude (and thus of the liquid film thickness, as we assume that the 
amplitude is 0.75 times the average liquid film thickness, see above) and 
proportional to the dynamic viscosity of the liquid. 
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• When the shear force exceeds the surface tension at the wave crest, a droplet 
is torn off, which will thus limit the liquid film thickness. 

 
It is not unrealistic to assume that the waves scale with the liquid film thickness 
and as the waves induce liquid motion, it is likely that the wavelength will 
increase with the liquid viscosity.  Whether this is proportional is not unrealistic, 
but unproven.  However, as the range of viscosities in wet-gas well flows is not 
that high, it is likely to be a good starting point.  As a starting value, to be refined 
by validation with experimental values, we will use the viscosity of water at 20oC 
as reference value.  The equation for the wavelength is: 

 

λ π
η

η= 2 0 75
20

. .( . )
,

d lf
l

w  (48) 

The rw is the radius of curvature at the wave crest is: 
 

 
r
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λ
π

2

24  (49) 

By using the Young-Laplace equation in its two-dimensional form: 
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1 1

 (50) 

and noting that ry, the curvature in the tangential direction, is very high, it can be 
written as: 
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 (51) 

When this value exceeds the wall shear stress, droplets are torn off, thus limiting 
the liquid film thickness.  As the wall shear stress also depends on dlf, the use of 
the Newton-Raphson method to find the maximum liquid film thickness, allowed 
by the surface tension, is recommended. 
 
The third limitation for the thickness of the liquid layer at the wall comes from the 
velocity gradient in the liquid layer in combination with the liquid viscosity.  We 
will assume that we have a linear velocity gradient in the liquid layer and the 
shear stress at the wall is given by: 

 
τ η

∂
∂w l

zv

r
=

.

.  (52) 

In a steady-state condition, this is equal to the interfacial shear stress and the 
gravitational force on the liquid.  Assuming a linear velocity profile in the liquid 
film, vi becomes: 

 
v

v
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di

z
lf=

∂
∂
.

.
.

 (53) 

As vi increases with increasing dlf, (vg – vi) decreases.  As the interfacial shear 
stress decreases with decreasing (vg – vi), this puts an upper limit on the liquid 
film thickness, which can be determined using the Newton-Raphson method. 
 
The downward force in the liquid film consists of two components: the 
gravitational force and the viscous force due to the velocity gradient in the film.  
If we assume a linear velocity profile in the film, the viscous force is equal to: 
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The gravitational force is equal to: 
 

 
F D L d gg lf l= π ρ. . . . .

 (55) 

The total downward force thus becomes: 
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 (56) 

Now an interfacial velocity needs to be chosen which balances the downward force 
and is just not able to tear off droplets from the interface: 
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 (57) 

The criterion for the tearing of droplets from the film is: 
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Equating both equations to eliminate the interfacial shear stress yields: 
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which is an explicit equation of the liquid film thickness as a function of the 
interface velocity.  From this follows: 

 
0 75 0 752 20 2. . . ( ) . .

,
g d vl lf

w

l
i lρ σ

η
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 (60) 

The interface velocity can be calculated using the equation above and the 
Colebrook correlation. 

 
τ ρi g g i

f
v v= −

2
2( )
 (61) 

The Fanning friction factor is a function of the liquid film thickness and the liquid 
viscosity.  So combining this equation with the equation for the downward force 
yields: 

 

v

d
d g

f
v vi

lf
l lf l g g i. . . ( )η ρ ρ+ = −

2
2

 (62) 

is an explicit equation for vi with a given dlf. 
 
A fourth mechanism is responsible for the limitation of the liquid film thickness, 
especially at higher velocities.  This is caused by the Kelvin-Helmholtz 
mechanism. An undulation on the liquid film will lead to a pressure undulation 
because the gas velocity will vary.  When this pressure undulation exceeds the 
surface tension, it will tear off droplets and thus reduce the film thickness.  This 
can be quantified by the equations below. 
 
For the derivation of the equations, we will first assume that the waves at the 
gas-liquid interface are encircling the complete circumference of the pipe.  The 
concept is that the force, generated by the increase of the gas velocity over the 
wave crests, has to be balanced by the surface tension.  If this force exceeds the 
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surface tension, drops will be torn off the surface, reducing the liquid film 
thickness.  The differential pressure, generated by the surface tension, has been 
derived above: 
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The differential pressure, caused by the Kelvin-Helmholtz effect is equal to: 
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in which: 

 
D D d lfmin ,max= − ⋅2

 

 
D D d lfmax ,min= − ⋅2

 (67) 

 
Using the assumption that the wave amplitude is 0.75 of the average liquid film 
thickness (see above), the following relations hold: 
 

 
D D d lfmin .= − ⋅35

 

 
D D d lfmax .= − ⋅05

 (68) 

When we square these diameters we will assume that dlf « D , we will ignore 
terms of dlf

2 which results in: 
 

 
D D D d lfmin ( )2 7≈ ⋅ − ⋅

 

 
D D D d lfmax ( )2 ≈ ⋅ −

 (69) 

Knowing that 
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we obtain: 
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Again ignoring the quadratic terms of the small fractions and using the 
approximation: 
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1
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−
≈ +δ δ

 (73) 

when δ « 1, we obtain: 
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If we assume that the wave covers only ¼ of the circumference of the wall, the 
equation becomes: 
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Equating this to the differential pressure, created by the surface tension leads to: 
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Solving dlf  from this equation and putting 1.125 ≈ 1 (as there are a number of 
“guessed” values in this number anyway), we obtain: 
 

 

d
D

vlf
g sg

w

l

=
⋅
⋅

σ
ρ

η
η2

20
.( )

,

 (77) 

The determination of the liquid film thickness using the Kelvin–Helmholtz 
mechanism limits the liquid film thickness at the higher liquid flow rates and 
results in more realistic entrained fractions.  In this way, a fourth criterion for the 
determination of the liquid layer is introduced.  The criteria so far are: 
 
1. The balance of the gravitational force, the wall shear stress and the gas-liquid 

interfacial shear force. 
2. The transportation capacity of the liquid film as determined by the first 

criterion. 
3. The tearing of droplets from the gas-liquid interface due to the shear force. 
4. The liquid film thickness as determined by the Kelvin–Helmholtz mechanism. 
 
It is obvious that the lowest value of the four limitations on the maximum 
thickness should be chosen.  Once this has been done, the liquid velocity (vi) at 
the gas-liquid interface can be determined.  From this, the volumetric flow rate of 
the liquid in the film can be calculated under the assumptions of the linear 
velocity profile in the film and dlf << D, the internal pipe diameter: 

 
Q D d

v
lf lf

i= π. . .
2  (78) 

Note that because the above mentioned assumptions the average velocity in the 
liquid film is vi / 2. 
 
The entrained fraction is: 

 l

lfl
f Q

QQ
E

−
=

 (79) 

Note that the entrained liquid moves as droplets, dispersed in the gas. 
 
6.3 The Prediction of the Differential Pressure of the Venturi 
 
Using the above obtained information, the actual gas velocity, the velocity of the 
droplets, dispersed in the gas and the velocity of the liquid in the film can be 
calculated and the Bernoulli contributions to the differential pressure can be 
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calculated, taking the break-up of the droplets in the Venturi into account. 
Similarly, the dissipation contribution can be calculated as described in sec. 3.2 
and also the contribution of the surface tension (note that the significant drop in 
the diameter of the droplets increases the energy, stored in the surface tension). 
The raise in potential energy can also be calculated, but one should realize that 
the for the droplets, the difference in density between the gas and the liquid 
needs to be used whereas for the liquid in the liquid film, the liquid density only 
should be used, because it is not immersed in the gas.  The final contribution 
comes from the friction of the liquid at the pipe wall because of viscosity. 
 
The Bernoulli contributions 
 
For the calculations of the Bernoulli contributions of the different phases, several 
aspects need to be taken into account. These are: 
 
1. The actual velocities of the phases need to be used, both in the pipe as in the 

throat of the Venturi. 
2. The fraction of the cross sectional area, taken up by the phases need to be 

included in the calculation. 
3. The contribution of the liquids needs to be separated in the entrained liquid 

and the film.  Both require the weighted average density of the liquid, which 
is different for the film and the droplets. 

4. It is assumed that the phases do not change while traveling through the 
Venturi, i.e., no gas comes out of solution from the oil and the entrained 
fractions remain the same. 

 
Ad 1 
As the kinetic energy directly depends on the velocity, this is logical.  So the 
superficial velocities need to be converted to actual velocities.  For the gas, this 
means that the effective diameter of the pipe is reduced, due to the presence of 
the liquid film and the gas velocity is further increased because of the presence of 
droplets, which also move slower than the gas.  The latter acts as an increase of 
the liquid volume fraction.  Both effects can be described by the following 
equation: 
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 (80) 

Note that the entrained fraction in the above equation is the entrained fraction for 
the total liquid flow rate.  The same holds for the liquid volume fraction.  The 
calculation of the liquid film thickness and the slip velocity needs to be done for 
the pipe and the throat and the resulting velocities need to be used for the 
calculation of the Bernoulli contribution of the gas, which subsequently needs to 
be corrected for the fraction of the cross sectional area, taken up by the gas (see 
Ad 2 below). 
 
The slip velocities for the droplets can be calculated using the equations as 
described in sec. 3.1 and 3.2.  Note that the slip velocity in the pipe is influenced 
by the parameter (currently chosen to be 0.7, see sec. 3.4.2 below) which 
corrects for the droplet size distribution and that the droplet velocity in the throat 
still lags the equilibrium velocity. 
 
The average velocity of the liquid film is the interface velocity divided by 2.  The 
interface velocity in the throat is significantly different from that in the pipe, but 
both can be calculated using the theory as described in sec. 3.3. 
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Ad 2 
The contribution to the Bernoulli differential pressure needs to be corrected for 
the fraction of the cross-sectional area, taken up by the fluid.  This is logical, 
because if that would not be done, a few drops of liquid would result in a major 
increase in the differential pressure, which is not realistic.  The following 
equations can be used: 

 
A A Ag d lf+ + = 1

 (81) 
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The resulting dPB thus becomes: 
 

 
dP A dP A dP A dPB g Bg d Bd lf Blf= + +

 (85) 

Ad 3 
Because the liquid consists of two immiscible fluids (oil and water), with different 
entrained fractions, the weighted densities of the liquid in the film at the wall and 
dispersed as droplets in the gas are different.  These can be calculated using: 
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Ad 4 
When the fluids move through the Venturi, the velocities and pressure change. 
Also, the geometry is not “straightforward”, which –in principle- all have an effect 
on the gas-liquid ratio and entrained fractions.  The drop in pressure between the 
inlet and the throat of the Venturi will lead to gas, coming out of solution from the 
oil.  This process is very hard to describe on the time scales of the fluids moving 
through the Venturi and therefore, it is recommended that the pressure changes 
are modest, compared to the absolute pressure (< 2%).  In this way, it is 
expected that the effects remain negligible. 
 
In the convergent section of the Venturi, several phenomena will take place. 
Because of the decrease of the cross-sectional area, droplets will be deposited in 
the liquid film at the wall, but because of the increase in the gas velocity, droplets 
will be torn off the liquid film more easily.  The entrance of the throat will act as a 
nozzle, increasing the entrained fraction. This is very hard to model and 
therefore, because of the countering effects, we will assume that the net-effect is 
zero. 
 
6.4 Refinement of the Initial Conditions 
 
Direct application of the equations, as outlined above, will result in a droplet 
diameter at the entrance of the Venturi which is at its maximum.  This is probably 
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not realistic as due to turbulence, differences will occur.  In general, the droplets 
will show a size distribution with a maximum value as calculated above.  But it is 
very hard to measure the droplet size distribution.  Using a droplet size 
distribution would also complicate the calculations so it is simplified by using a 
single value of the droplet diameter at the entrance of the Venturi, albeit smaller 
than the maximum value.  A diameter, which is 0.7 times the maximum possible 
diameter will be used.  Fortunately, the calculated dissipation is not strongly 
dependent on the initial conditions, but it tends to decrease slightly with 
decreasing diameter at the entrance of the Venturi.  It may require some “fine 
tuning” using experimental data. 
 
6.5 Refinement of the Presence of Three Phases 
 
In reality, the flow will be three-phase (gas, oil and water).  The question is what 
will happen to the liquid phase as oil and water are immiscible.  Modelling with 
different alternatives yields, of course, different results, but for the time being, 
the best results have been obtained when the liquid density is taken as the flow 
rate weighted average of oil and water.  Similarly for the surface tension.  It is 
not unlikely that the strong mixing forces in an upward wet-gas flow lie at the 
basis for this result, but it is certainly a subject for further study and modelling. 
 
6.6 Contribution Due to the Surface Tension of the Droplets 
 
The Young – Laplace equation for the differential pressure of a droplet is 
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This translates for the pressure itself as: 
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It is assumed (see above) that the droplet diameters of the oil and water droplets 
are identical.  The surface tension used is the flow rate weighted average of the 
gas – oil and gas – water values. 
 
6.7 Contribution Due to the Wall Shear Stress 
 
The wall shear stress yields a pressure loss which is equal to 
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 (90) 

which has to be integrated from the pipe (upstream) pressure tap to the throat 
pressure tap. 
 
An impression of the different contributions to the differential pressure as 
predicted by the model for one of the conditions at 20 bar: 
 
Potential energy   46 Pa 
Dissipation 12,191 Pa 
Bernoulli gas 19,430 Pa 
Bernoulli droplets 26,414 Pa 
Bernoulli liquid film    864 Pa 
Total modelled differential pressure 58,945 Pa 
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7 COMPARISON WITH TEST-LOOP DATA  
 
For the initial calibration and verification of the model for the horizontal flow, the 
data from the Sintef facility in Norway, on which the correlation of De Leeuw was 
based, have been used.  The fluids were Nitrogen and diesel.  The same Venturi, 
4”, β-ratio of 0.4, was subsequently tested at CEESI as part of the wet-gas JIP. 
Although the fluids at CEESI were significantly different from those at Sintef , the 
fluids were natural gas and Decane, the model predicted the overreading very 
well.  The next comparison was with a newly built 6”, β-ratio 0.739 Venturi which 
was tested at K-lab, together with a vertical upward Venturi.  The fluids at K-lab 
were natural gas, Sleipner condensate and water.  No modifications to the model 
were made.  The physical properties of the fluids were calculated using the Shell 
STFlash software, a PVT simulator. 
 
7.1 Horizontal Venturi Comparison 
 
The model predicted the overreading of the horizontal Venturi correctly for a wide 
range of conditions.  The results are shown in the six figures below, which are a 
representative sample of the test points at K-lab at respectivily 25 bar, 55 bar 

and 90 bar. 

  
 

Figure 2: Overreading comparison between the measured data, the Venturi 
model, and the De Leeuw correlation. 

 
 

  

 
Figure 3: Overreading comparison between the measured data, the Venturi 

model, and the De Leeuw correlation. 
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Figure 4: Overreading comparison between the measured data, the Venturi 

model, and the De Leeuw correlation. 
 
 
7.2 Vertical Venturi Comparison 
 
The model for the vertical upward Venturi was developed with a limited propriety 
data-set.  Verification of the model was done using the Shell data-set acquired at 
K-lab.  The fluids and pressures were different from those which were used to 
develop the model.  The results are shown in the figures below. 
 

  
 

  
 

Figure 5: Horizontal axis: Lockhart-Martinelli parameter, vertical axis: ratio of 
modelled differential pressure and measured differential pressure. 25 
bar. 
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Figure 6: Horizontal: Lockhart-Martinelli parameter, vertical: ratio of modelled 

differential pressure and measured differential pressure. 55 bar. 
 
 

 

 
Figure 7: Horizontal: Lockhart-Martinelli parameter, vertical: ratio of modelled 

differential pressure and measured differential pressure. 90 bar. 
 
 
These results show that the predictions deviate when the gas Froude number is 
low and the Lockhart-Martinelli parameter is high.  There is also a trend with the 
water cut.  The gas density plays a role too as the deviations are larger at 25 bar 
than at 55 and 90 bar.  However, these differences can be understood. 
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Both models assume a “steady state” flow of the three phases.  In a horizontal 
flow line, this condition is fulfilled as long as any intermittent flow regime is 
avoided.  For horizontal wet-gas flows this means that the Lockhart-Martinelli 
parameter should be below 0.35.  For the vertical upward flow, however, this 
alone is an insufficient requirement.  As the liquid has to be transported upward 
by the gas, hence only specifying that the LM-parameter should be below 0.35 
includes the conditions with low gas flow rates: the LM parameter is based on the 
ratio of the liquid and gas flow rates.  
 
It is easy to see that at low flow rates the gas will be unable to lift the liquid in a 
steady fashion.  At that moment, the flow becomes intermittent (e.g. churn).  In 
a qualitative way, this is confirmed by a typical two-phase flow map, taken from 
the internet.  See figure 8 below. As can be seen, there is a minimum gas flow 
rate requirement for non intermittent conditions, possibly expressed by the gas 
Froude number. 
 

 
 
Figure 8: Two-phase flow map of vertical upward flow (Dahl, 2005). 
 
As stated above, modelling of the liquid layer is the most difficult part.  One of 
the modelled parameters is the velocity of the liquid at the gas-liquid interface.  
At a high gas velocity, the liquid will have a distinct velocity in the upward 
direction.  However, lowering the gas velocity will mean a lower velocity in the 
liquid layer, down to a point where, theoretically speaking, the liquid in the wall 
layer will come to a stand-still because the friction from the gas moving upward 
balances the gravitational force downward.  But it is obvious that in a realistic 
system, such a standstill will not occur, but this will be the onset to instability. 
 
When the predicted differential pressure starts to deviate from the measured 
value, the model calculates a virtual standstill of the liquid in the wall layer, 
corresponding to instability in realistic systems.  We can therefore conclude that 
the model is unable to predict the differential pressure of the Venturi at those 
conditions, but it is able to predict the onset of instability. 
 
It shows that with low gas velocities and at low liquid loadings, the model 
predictions are in agreement with the measured values.  When the LM-parameter 
is lower than 0.04, the amount of liquid is probably small enough to be 
transported by droplets, dispersed in the gas, and there is no build-up of liquid, 
inducing the instability.  At least at the gas velocities / gas Froude numbers which 
have been covered by these tests. 
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In general, the higher the gas density, the lower the gas velocity can be before 
the onset of instability and the higher the LM-parameter value can be.  Although 
the number of data-points is limited, it seems that at higher water-cuts, the 
maximum allowable LM-parameter values before the instability starts, are lower. 
Whether this is caused by the higher density of water or the higher surface 
tension with the gas or both remains to be seen.  Further modelling and 
experiments should shed light on this question. 
 
When the predictions are in line with the measured differential pressure, a small 
but systematic difference can be discerned: the predicted differential pressure is a 
bit too small.  There are a number of contributors to this phenomenon: 
 
1. The discharge coefficient of the vertical upward Venturi is unknown. It has 

been taken as 1 (one) in the model predictions.  When a value of 0.995 would 
be used, the predicted differential pressure should be increased by 1%, a 
value of 0.99 would result in a 2% correction. 
 

2. It should be noted that the pressure, temperature and physical properties of 
the fluids are determined at the location of the horizontal Venturi during 
these tests.  As the vertical upward Venturi was located downstream of the 
horizontal Venturi, the wedge meter and the V-cone meters, the conditions at 
the vertical upward Venturi were systematically different from the conditions 
at which the physical properties of the fluids were determined: lower 
pressure, thus higher volumetric gas flow rate and lower density of the gas. 
In differential pressure flow meters, the differential pressure is inversely 
proportional to the density at the same mass flow rate, so this has a 
systematic effect on the measured differential pressure. 
 

3. It is not unlikely that also the gas volumetric flow rate was further increased 
by gas, coming out of solution from the oil.  This would also have 
consequences for the oil density. Both would have a systematic influence on 
the results, both in the same direction as can be discerned from the tests. 
 

 
8 DISCUSSION  
 
The modelling of the differential pressure, generated by a wet-gas flow in a 
Venturi, both horizontally and vertically upward, has shown to be successful. 
Comparison with test-loop data show a good (vertical) or an excellent (horizontal) 
agreement, which underpin the physics included in the models.  Only a few, low 
level relationships are required to overcome the limited knowledge of some 
aspects.  E.g. the drag force on droplets has been described with the correlation 
used for decades and can be regarded as well-established.  The correlation, used 
for the entrainment rate in the accelerating flow in the convergent section of the 
horizontal Venturi, is novel and this could be subject to further study and 
investigation. 
 
The model for the vertical upward Venturi requires less closure relationships than 
the model for the horizontal Venturi.  It includes the Colebrook correlation for the 
friction factor on the rough gas-liquid interface[8], this correlation is well 
established. 
 
The modelling reveals which physical properties are essential to calculate the 
differential pressure.  Therefore, the model includes physical properties, hitherto 
not, or only in an obscure way, included in the wet-gas overeading correlations. 
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For example, the models make clear why, and in what respect, the surface 
tension between gas and the liquids is important.  At the same time, it explains 
why the differential pressure can be higher than in the case of a homogeneous 
mist flow.  On the other hand, the models show that the essential physical 
properties of the fluids have been included in the model.  Something which one 
can never be sure of when a correlation is made. 
 
Because the modelling includes the physics which govern the measurement 
process, these are not limited to the range of the verification data.  So the models 
can be used for more significantly different conditions as well, as can happen in 
reality. 
 
As the overreading of a horizontal Venturi is, at the same conditions, always 
smaller than that of a vertical upward Venturi, it is possible to combine the two in 
order to create a wet-gas flow meter.  This will yield two equations with two 
unknowns, which can be solved.  As the overreadings, calculated by the models, 
are more accurate and reliable than those, predicted by correlations, the results 
for the gas and liquid flow rates will also be more accurate.  Possibly, by using 
additional information, like the total pressure loss ratios of the Venturis, it might 
become possible to estimate the water flow rate as well. 
 
The modelling of the total pressure loss of a Venturi in a wet-gas flow can 
basically be modelled in a similar way.  This has not been done by the authors. 
However, the authors hope that their results, presented here, will inspire and 
stimulate others to develop such models.  This would further enhance the 
possibilities of creating a wet-gas flow meter. 
 
 
9 CONCLUSIONS, WAY FORWARD  
 
The present paper  has shown that physical modelling of wet-gas flow though 
horizontal and vertical Venturis is feasible.  The models are capable of predicting 
the differential pressure generated by a three-phase wet gas flow in both cases.   
Comparison with test-loop data show an excellent agreement, which underpins 
the physics included in the models.  Moreover, the modelling reveals which 
physical properties are essential to calculate the differential pressure. 
 
The models can be applied outside the range of experimental data in pressure, 
temperature and physical properties of the fluids and still provide useful results. 
This is a major improvement over correlations, which rarely include all the 
required physical properties. 
 
Further work to improve the understanding could include a better understanding 
of the entrainment in the convergent section of the horizontal Venturi and a 
better understanding of the physics of the water-oil mixture in the vertical upward 
flow.  The flow measurement community is challenged to publish further 
contributions to these models, which would benefit the overall performance of 
multi-phase flow meters. 
 
 
10 NOTATION 
 

a Wave amplitude m 

AD Cross sectional area of pipe m2 

Ad Fraction of cross-sectional area, occupied by the droplets 
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Ag Fraction of cross-sectional area, occupied by the gas 

Ale Fraction of cross-sectional area, occupied by the liquid film 
 

Alf Fraction of cross-sectional area, occupied by the liquid film 

Alg Fraction of cross-sectional area, occupied by droplets 
 

C Constant Pa 

CD Discharge coefficient 

Cw Drag coefficient 

D Pipe internal diameter m 

d Diameter of droplet m 

Dlf Thickness of liquid film m 

dlf Thickness of liquid film m 

dlf,max Maximum thickness of liquid film due to the wave m 

dlf,min Minimum thickness of liquid film due to the wave m 

Dmax Maximum diameter available for the gas flow m 

Dmin Minimum diameter available for the gas flow m 

dPB Differential pressure contribution, due to Bernoulli effect Pa 

dPd Differential pressure contribution, due to Bernoulli effect of the droplets Pa 

dPg Differential pressure contribution, due to Bernoulli effect of the gas Pa 

dPlf Differential pressure contribution, due to Bernoulli effect of the film Pa 

E Energy J 

Ef Entrained fraction 

Ef,o Entrained fraction of oil 

Ef,w Entrained fraction of water 

EM Maximum liquid entrainment, modelled as eq. 18 

er Entrainment rate m/s 

f Fanning friction factor 

F Force on sphere N 

Fd Force on droplet N 

Fg Net gravitational force N 

Frg Gas Froude number 

Frl Liquid Froude number 

fsg Friction factor, smooth pipe, turbulent flow, modelled as eq. 21 

g Gravitational acceleration m/s2 

GVFa Actual gas volume fraction 

h Height above reference surface m 

k Surface roughness 

L Length of pipe m 

LMq Quasi Lockhart-Martinelli parameter 

LVF Liquid Volume Fraction 

m Mass of sphere kg 

Nd Number of droplets per m3 m-3 

Nd Number of droplets per m3 of liquid entrained 

Ndg Normalised energy of the dissipation of the gas, flowing around the drops Pa 

Ndiss Normalised energy of the dissipation Pa 

Npl Normalised energy of the potential energy of the liquid Pa 
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Nsr Normalised energy of the dissipation, caused by the interfacial roughness Pa 

Nst Normalised energy of the surface tension of the entrained droplets Pa 

Nt Normalised total energy Pa 

Nt Number of droplets per second s-1 

OVF Oil Volume Fraction 

p Static pressure Pa 

Pst Pressure generated by the surface tension N/m2 

Pst,act Actual pressure, generated by the surface tension N/m2 

Q Volumetric flow rate m3/s 

Qg Gas flow rate at actual conditions m3/s 

Qgas Gas volume flow rate at actual conditions m3/s 

Ql Liquid flow rate at actual conditions m3/s 

Qlf Volumetric flow rate in liquid film at the wall m3/s 

Qliquid Liquid volume rate at actual conditions m3/s 

Qo Oil flow rate at actual conditions m3/s 

Qw Water flow rate at actual conditions m3/s 

r Distance to the wall (perpendicular to the wall) m 

r Radius of droplet m 

ρδ Weighted average density of droplets kg/m3 

rd Droplet diameter m 

Re Reynolds number of flow around droplet, eq. 28 

re Effective radius of droplet under dynamic conditions m 

Red Reynolds number of flow around droplet: 

Resg Reynolds number, based on the superficial gas velocity, eq. 22 

SAd Surface area of droplet m2 

t Time s 

v Velocity of fluid m/s 

vd Velocity of droplets m/s 

Vd Volume of droplet m3 

ve Terminal velocity of sphere m/s 

vg Actual gas velocity m/s 

vg Gas velocity at location of droplet m/s 

vgs Superficial gas velocity m/s 

vi Liquid velocity at the gas-liquid interface m/s 

vlf Velocity of liquid in the liquid film m/s 

vr Velocity difference between gas and droplet m/s 

vr Slip velocity m/s 

vr Velocity difference between gas and droplet (= vg - vd)  m/s 

vs,mix Superficial velocity of the mixture m/s 

vsg Superficial gas velocity m/s 

vsg,l Superficial gas or liquid velocity m/s 

vsl Superficial liquid velocity m/s 

vz Liquid velocity in the z (upward) direction m/s 

wl Liquid mass flow rate  kg/s 

wl,c Critical liquid mass flow rate = 0.157 π D kg/s 
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WVF Water volume fraction 

∆p Differential pressure due to surface tension at the wave crest Pa 

∆pd  Differential pressure contribution due to dissipation Pa 

ηl Dynamic viscosity of liquid Pa.s 

ηg Dynamic gas viscosity Pa s 

ηw,20 Dynamic viscosity of water at 20 oC Pa.s 

λ Wavelength of wave on gas-liquid interface m 

ρd Weighted average density of droplets kg/m3 

ρg Gas density kg/m3 

ρl Liquid density kg/m3 

ρl,f Weighted average density of liquid film kg/m3 

ρo Oil density kg/m3 

ρw Water density kg/m3 

σ Surface tension N/m 

σo,g Surface tension oil-gas N/m 

σw,g Surface tension water-gas N/m 

τw Wall shear stress Pa 

Δp Differential pressure Pa 

ΔpB Differential pressure caused by the Bernoulli effect Pa 

Δpd Differential pressure caused by dissipation Pa 

Δpgo Differential pressure if only the gas was flowing Pa 

ΔpO Differential pressure over the orifice Pa 

Δptp Differential pressure in two or three phase flow Pa 

ε Compressibility factor 

ρ Density kg/m3 

ρl Liquid density, actual kg/m3 

ρmix Mixture density, actual kg/m3 
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APPENDIX 1 
 

DERIVATION OF  THE QUASI LOCKHART-MARTINELLI PARAMETER 
 
The quasi Lockhart-Martinelli parameter is based on mixture properties and 
calculated from: 
 

  v E + v = v slfsgmixs,  (A-1) 

 
and 

 v E + v

 v E +  v
 = 

slfsg

lslfgsg

mix

ρρ
ρ

 (A-2) 

 
From which follows: 
 

 
ρ
ρ

mix

l

mixs,

slf
q  

v

v ) E - (1
 = LM

 (A-3) 

 
 



34th International North Sea Flow Measurement Workshop 
25-28 October 2016 

 
 

31 

APPENDIX 2 
 

DISSIPATION DUE TO DRAG AROUND THE DROPLETS 
 
The droplets are accelerated in the convergent section and the throat of the 
Venturi and decelerated in the divergent part.  The viscous forces which are 
responsible for these changes in velocity are also responsible for the dissipation of 
energy.  This can be illustrated as follows: 
 
Imagine a steel sphere which is moving through a viscous fluid.  After a while the 
sphere will reach its terminal velocity and in that case the forces of gravity and 
viscous drag are in balance.  The dissipation will then equal the loss of potential 
energy of the sphere per unit time: 
 

 
v F = mgv = 

dt

dh
 

dh

d(mgh)
 = 

dt

d(mgh)
 = 

dt

dE
ee
 (B-1) 

 
In the case of the droplets: 

 dE = dt )v - vF( ddg  (B-2) 

and 

 
dt )v - v( F = E dgdd ∫

 (B-3) 

 
The force on the droplet is calculated as follows: 
 

 
( ) 









2

1
 r  C = F d

2
wd π

 (B-4) 

The drag coefficient is calculated by: 

 
43 > Re       0.44 + 

Re

24
 = C d

d
w

 (B-5) 

 

 43  Re                  1 = C dw ≤  (B-6) 

in which Red is the Reynolds number of flow around droplet: 

 
η

ρ

g

grr
d

 d v
 = Re

 (B-7) 

In order to calculate the Δp caused by this dissipation, the dissipation (which is 
calculated for an individual droplet) has to be multiplied by the number of 
droplets per m3 which can be found by calculating the number of droplets per 
second: 

 
r

3

4
E Q

 = N
3

fl
t

π
 (B-8) 

and dividing this by the total volume flow rate: 
 

      (B-9) 

 

Q + Q = Q glt
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







r

3

4
 )Q + Q(

E Q
 = N

3
gl

fl
v

π
 (B-10) 

 
For the calculation, the diameter of the droplets is assumed to be equal to the 
average diameter in the pipe upstream of the Venturi.  As soon as the fluids enter 
the Venturi, the gas will accelerate and thus exert a drag force on the droplet.  As 
soon as the drag force exceeds the surface tension of the droplet, the droplet is 
assumed to split into two identical droplets.  As the drag force on the droplet 
increases with the droplet diameter (due to the larger surface area and the larger 
inertia of the droplet) and the surface tension decreases with increasing droplet 
diameter (due to the reduced curvature, see also Appendix 3), the calculation of 
the droplet velocity is not very sensitive to the initial value of the droplet 
diameter: the forces on the droplet will result in droplets of similar diameter, 
virtually independent on the initial conditions. 
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APPENDIX 3 
 

DIFFERENTIAL PRESSURE CAUSED BY SURFACE TENSION 
 
The droplets, dispersed in the gas, represent a potential energy, caused by the 
surface tension: in order to create a droplet, the surface tension has to be 
overcome.  Imagine a m3 of liquid, split up into droplets with a diameter d 
(= 2r). The surface area of such a droplet is: 
 

 r4 = SA 2
d π

 (C-1) 

The volume of such a droplet is: 
 

 
r

3

4
 = V 3

d π
 (C-2) 

The m3 of entrained liquid thus yields a number of droplets equal to: 
 

 
r

3

4
1

 = N
3

d

π
 (C-3) 

The total surface area of the m3 entrained liquid is: 
 

 

d

6
 = 

r

3
 = 

r
3

4
r4

 = SA N = SA
3

2

ddT

π

π

 (C-4) 

 
The pressure generated by the surface tension is: 

 
σ 

d

6
 = Pst

 (C-5) 

However, the flow is two-phase, and thus the pressure is: 
 

 
E 

d

 6
 LVF = P factst, 







 σ

 (C-6) 

 
The reason is that the decrease in pressure is independent of the amount of 
liquid: if the fluid consisted of liquid only, the pressure decrease would be 
independent whether it was 1 ml or 1 m3.  However, the smaller the fraction of 
liquid dispersed, the less the pressure decreases. 
 


