

Finding a needle in a haystack – how to control almost everything in a measurement system

Augusto Silva
Cesar Roberto Rodrigues
Rosemberg Leite

Brazilian Royalty Framework

Brazilian Flow Metering Regulation

Measurement Management System

Brazilian Royalty Framework

- Too many stakeholders
 - Cities, states, federal government, special funds.
- Allocation per well
 - Depends on well production and physical location.
- Production information in real-time
 - Data straight from the flow computer on a daily basis.

Brazilian Royalty Framework

Brazilian Flow Metering Regulation

Measurement Management System

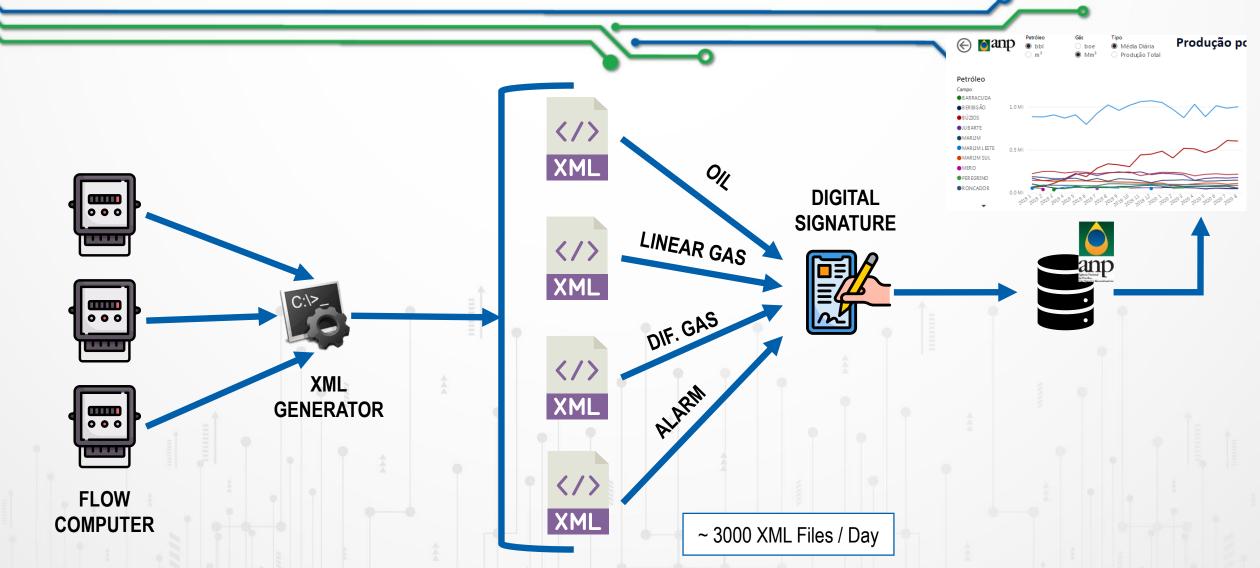
Brazilian Flow Metering Regulation

Several resolutions:

Joint Resolution ANP/INMETRO nº1/2013	Technical Regulation for Petroleum and Natural Gas Measurement
Resolution ANP n°52/2013	Technical Regulation for Implementation of Chemical Analysis Results
Resolution ANP nº18/2014	Technical Regulation for Metering System Failures
Resolution ANP nº65/2014	Technical Regulation for Production Data
Resolution ANP n°44/2015	Technical Regulation for Usage of Multiphase Meters
Official Letter ANP/NFP 0007/2015 Official Letter ANP/NFP 0009/2015 Official Letter e-ANP/NFP 0001/2020	Other clarifications on measurement systems

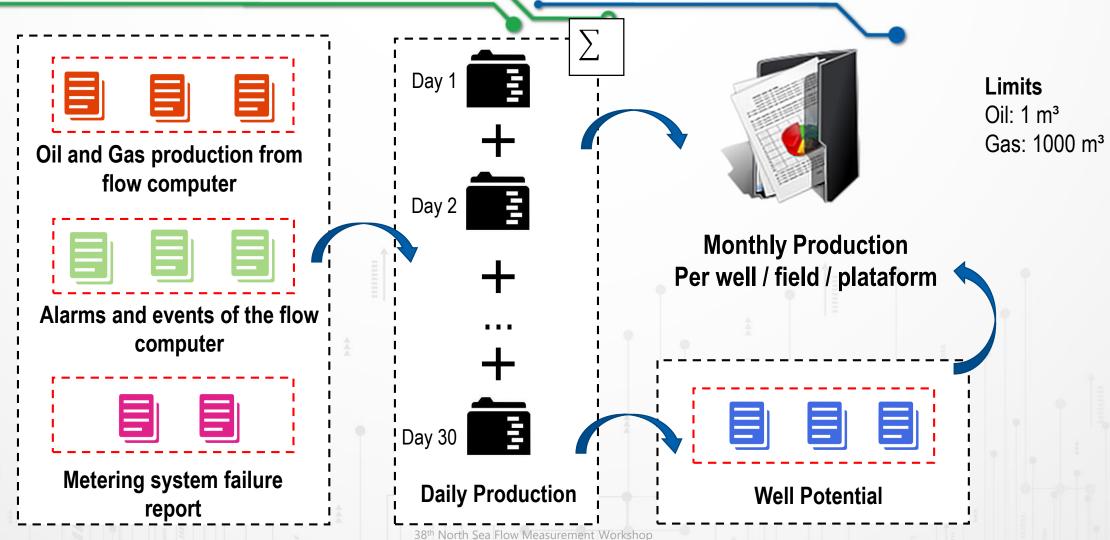
Deadlines are everywhere:

Requeriment	Deadline	Source
Flow meter calibration	3, 6 or 12 months	Joint Resolution ANP/INMETRO nº1/2013
Calibration certificate emission	10 business days	Official Letter e-ANP/NFP 0001/2020
Calibration results implementation	3 business days	Official Letter e-ANP/NFP 0001/2020
Gas sampling	30 days	Joint Resolution ANP/INMETRO nº1/2013
Chromatography results emission	25 days	Resolution ANP nº52/2013
Well testing	42 or 90 days	Joint Resolution ANP/INMETRO nº1/2013
Sending production data	3 business days	Resolution ANP nº65/2014
Metering system failure comunication	72 hours	Resolution ANP nº18/2014


Brazilian Royalty Framework

Brazilian Flow Metering Regulation

Measurement Management System


Getting Data Straight From The Field

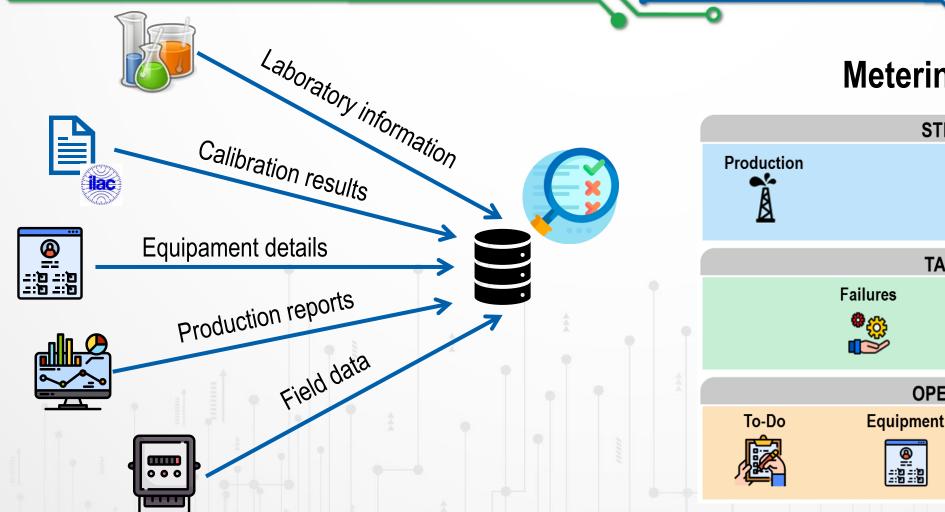
How the allocation process works

Production data – Much more than flow

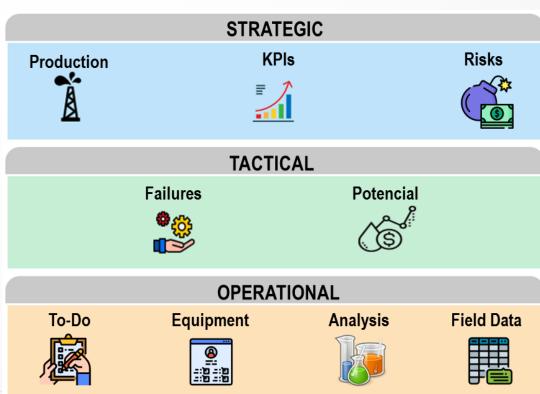
- Flow conditions
 - Temperature, pressure, correction factors
- Fluid properties
 - Gas chromatography, BSW, shrinkage factor
- Metering configuration
 - Meter factor, k-factor, calibration points, alarms
- Metering system details
 - Serial number, firmware, installation

XML Format

- <LISTA_DADOS_BASICOS>


```
    - <DADOS_BASICOS COD_TAG_PONTO_MEDICAO="FQI-12345" COD_INSTALACAO="10000" NUM_SERIE</li>

    <LISTA_CONFIGURACAO_CV>
          <NUM_SERIE_COMPUTADOR_VAZAO>10749604</NUM_SERIE_COMPUTADOR_VAZAO>
          <DHA_COLETA>04/09/2020 00:18:13
          <MED_TEMPERATURA>20,000</MED_TEMPERATURA>
          <MED PRESSAO ATMSA>101,325</MED PRESSAO ATMSA>
          <MED_PRESSAO_RFRNA>101,325</MED_PRESSAO_RFRNA>
          <MED_DENSIDADE_RELATIVA>0,66802996
/MED_DENSIDADE_RELATIVA>
          <DSC_NORMA_UTILIZADA_CALCULO>AGA3_1992
/DSC_NORMA_UTILIZADA_CALCULO>
          <PCT CROMATOGRAFIA NITROGENIO>12,74
/PCT CROMATOGRAFIA NITROGENIO>
          <PCT_CROMATOGRAFIA_CO2>0,17</PCT_CROMATOGRAFIA_CO2>
          <PCT_CROMATOGRAFIA_METANO>75,22</PCT_CROMATOGRAFIA_METANO>
          <PCT CROMATOGRAFIA ETANO>11,65
/PCT CROMATOGRAFIA ETANO>
          <PCT_CROMATOGRAFIA_PROPANO>0,20</PCT_CROMATOGRAFIA_PROPANO>
          <PCT CROMATOGRAFIA N BUTANO>0,01
/PCT CROMATOGRAFIA N BUTANO>
          <PCT_CROMATOGRAFIA_I_BUTANO>0,01
/PCT_CROMATOGRAFIA_I_BUTANO>
          <PCT_CROMATOGRAFIA_N_PENTANO>0,00</PCT_CROMATOGRAFIA_N_PENTANO>
          <PCT CROMATOGRAFIA I PENTANO>0,00
/PCT CROMATOGRAFIA I PENTANO>
          <PCT_CROMATOGRAFIA_HEXANO>0,00
(PCT_CROMATOGRAFIA_HEXANO>
          <PCT_CROMATOGRAFIA_HEPTANO>0,00</PCT_CROMATOGRAFIA_HEPTANO>
          <PCT_CROMATOGRAFIA_OCTANO>0,00</PCT_CROMATOGRAFIA_OCTANO>
          <PCT CROMATOGRAFIA NONANO>0,00
(PCT CROMATOGRAFIA NONANO>
          <PCT_CROMATOGRAFIA_DECANO>0,00
          <PCT_CROMATOGRAFIA_H2S>0,00</pct_CROMATOGRAFIA_H2S>
          <PCT_CROMATOGRAFIA_AGUA>0,00</PCT_CROMATOGRAFIA_AGUA>
          <PCT_CROMATOGRAFIA_HELIO>0,00</PCT_CROMATOGRAFIA_HELIO>
          <PCT_CROMATOGRAFIA_OXIGENIO>0,00

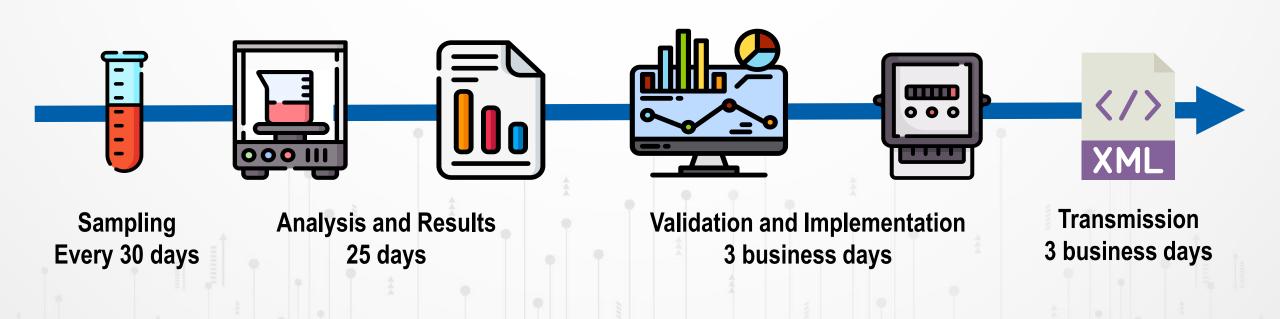

CT_CROMATOGRAFIA_OXIGENIO>
          <PCT_CROMATOGRAFIA_CO>0,00</PCT_CROMATOGRAFIA_CO>
          <PCT CROMATOGRAFIA HIDROGENIO>0,00
(PCT CROMATOGRAFIA HIDROGENIO>
          <PCT_CROMATOGRAFIA_ARGONIO>0,00
/PCT_CROMATOGRAFIA_ARGONIO>
          <DSC_VERSAO_SOFTWARE>27.75.06
       </CONFIGURAÇÃO CV>
    </LISTA_CONFIGURACAO_CV>
    <LISTA ELEMENTO PRIMARIO>
          <ICE LIMITE SPRR ALARME>52836,00</ICE LIMITE SPRR ALARME>
```

An integrated measurement management system

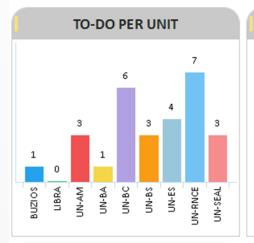
Metering Panel

An integrated measurement management system

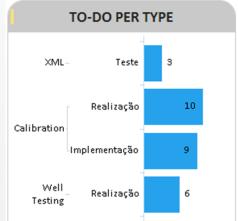
On screen and emails alerts


- Data from the flow computer is being sent?
- Chromatography is according to the latest result?
- Calibration results were implemented in time?
- Any event or alarm that should be a concern?

Control of the entire measurement process


Chemical Analysis Process

Control of the entire measurement process



XML					
RESPO	IDENTIFICAD	PENDÊNCIA	DATA REFERÊ		
P-18	7-MRL-215HP	Te ste	20/09/2020		
P-18	7-MRL-173HP	Te ste	19/09/2020		
OP-CN	7-CNC-24-ES	Teste	19/09/2020		
	P-18 P-18	RESPO IDENTIFICAD P-18 7-MRL-215HP P-18 7-MRL-173HP	RESPO IDENTIFICAD PENDÊNCIA P-18 7-MRL-215HP Teste P-18 7-MRL-173HP Teste		

	CHEMICAL ANALYSIS					
UN	RESPO	IDENTIFICAD	PENDÊNCIA	DATA REFERÊ 04/07/2020		
UN-BA	OP-CN	3-FAJ-4D-ES	Transporte			

WELL TESTING					
UN-BS UN-BS	RESPO FPCI FPCSQ	IDENTIFICAD 7-BAN-1-SPS 7-LL-80DB-RJS	PENDÊNCIA Realização Realização	DATA REFERÊ 04/07/2020 04/07/2020	

CALIBRATION							
UN ▲ RESPO IDENTIFICAD PENDÊNCIA DATA REFERÊ V/ BUZIOS P-77 FIT-1212001A Realização 04/07/2020							

Control of the entire measurement process

Validation of Gas Chromatography Results

Gráfico	Análise T-Student	Amostras participantes					
Componen	ite	Interv. de confiança	Resultado teste	Média	Variância	Desv. padrão	Grau de liberdade
C1 METAN	0	79,61 85,76	87,29	82,68	8,57	2,93	5
C2 ETANO		5,6 8,26	4,83	6,93	1,6	1,27	5
C3 PROPA	NO	3,49 5,59	2,87	4,54	1,01	1,01	5
IC4 ISOBU	TANO	0,71 0,93	0,65	0,82	0,02	0,11	5
NC4 N-BUT	TANO	1,13 1,59	1,04	1,36	0,05	0,22	5
IC5 ISOPE	NTANO	0,24 0,35	0,24	0,29	0,01	0,06	5
NC5 N-PEN	NTANO	0,27 0,42	0,29	0,34	0,01	0,07	5
C6 HC EM	C6	0,19 0,45	0,27	0,32	0,02	0,13	5
C7 HC EM	C7	0,15 0,65	0,32	0,4	0,06	0,24	5
C8 HC EM	C8	0,2 0,51	0,33	0,36	0,03	0,15	5
C9 HC EM	C9	0,13 0,3	0,31	0,22	0,01	0,08	5
C10 HC EM	1 C10	0,03 0,16	0,19	0,1	0,01	0,06	5

Results vs Flow Computer

11/06/2019	572795	7 14/06	5/2019
Componente	Amostra	XML	
metano	73.81	73.26	0
etano	10.8	10.71	0
propano	8.88	9.08	0
nButano	2.5	2.69	0
iButano	1.26	1.34	0
nPentano	0.52	0.6	0
iPentano	0.43	0.44	•
hexano	0.19	0.23	θ

De: SMED - Suporte do Sistema <SMED@petrobras.com.br>

Enviada em: quarta-feira, 9 de setembro de 2020 12:02

Para: Augusto Proenca da Silva <augusto.proenca@petrobras.com.br> Assunto: [AVISO] - Alteração de dados de equipamentos - 08/09/2020

Prezado(a) AUGUSTO PROENCA DA SILVA,

Segue a lista de pontos de medição que tiveram equipamentos alterados em 08/09/2020.

Instalation	TAG	Description	XML field	Old value	New Value
Plataform X	EMED-02	Meter serial number	NUM_SERIE_ELEMENTO_PRIMARIO	SAP-1651247	SAP-2133793
Plataform X	EMED-03	Meter factor 1	ICE_METER_FACTOR_1	0,99920	0,99940
Plataform Y	FIT1234	Flow computer firmware	DSC_VERSAO_SOFTWARE	24.75.01 (EB23)	24.75.02
Plataform Z	FQI-9999	Orifice plate diameter	MED_DIAMETRO_REFERENCIA	0037,600	0062,110
Plataform Z	FQI-9999	% C2	PCT_CROMATOGRAFIA_ETANO	7,860000	9,290000
Plataform Z	FQI-9999	% C3	PCT_CROMATOGRAFIA_PROPANO	5,980000	6,380000
Plataform Z	FQI-9999	% C6	PCT_CROMATOGRAFIA_HEXANO	0,450000	0,200000

Brazilian Royalty Framework

Brazilian Flow Metering Regulation

Measurement Management System

Conclusion

- Every day, lots of information about the metering system that goes beyond flow are generated and stored.
- Being able to use that information in an integrated way can reduce the exposure to non-conformities and helps to improve system efficiency.

 Too much information, if you don't know how to use it, is as bad as no information at all.

Contact Us

Augusto Proença da Silva

Petrobras

www.petrobras.com.br

augusto.proenca@petrobras.com.br

(+55 21) 2144-5791