

FluidMagic – PVT consistency in allocation from well test to field level

Hydrocarbon Management Workshop 2023, 01/06/2023 Øystein Tesaker & Knut Uleberg, Equinor

Topics

Rate measurements

- Reservoir allocation
- Volume-rate, mass-rate, density, compositions, pressure and temperature
- Resulting Sales products
 - Separation, Shrinkage factors, PT tables, K-factors and ORF-factors

FluidMagic | Ensuring consistent fluids description across all disciplines by using a consistent fluid model for all calculations

The production engineer

The production/flow-assurance/process engineers

The reservoir engineer

Rate Conversions - Problem Definition

(A) Actual to Surface Product Conversions | Problem statement

Given measured oil and gas volumes at separator conditions ($p_{act} T_{act}$)...

What do measured volumes at actual conditions correspond to in terms of surface process volumes?

Note: act = actual = line measurements = a

(B) Actual to Surface Product Conversions when gas lift is added equinor :

6 | Document Title

Rate conversions - Solution Methods

7 |

Solution methods: (1) p-T conversion tables, using fixed feed composition

Basis:

- An estimated fluid well stream composition
- A (tuned) equation of state (EOS) model
- A representation of the surface process

Methodology:

- Calculate process volumes for estimated wellstream composition.
- Calculate corresponding actual oil- and gas volumes at different p_{act}, T_{act}

Shrinkage
$$(p_{act}, T_{act}) = Vo_{pro}/Vo_{act}(p_{act}, T_{act})$$

Post Inlet Oil shrinkage (1/Bo) [Sm3/m3]							
P/T	3 10	12	14	16	18	20	22
10	0.99355105	0.956	743823	0.947	910237	0.939	794274
20	0.986312392	0.955	056221	0.946	896381	0.939	273676
30	0.978015448	0.951	920963	0.944	545251	0.937	520722
40	0.969048738	0.947	421725	0.940	876289	0.934	515336
45	0.964401021	0.944	711584	0.938	57806	0.932	558305
50	0.959676617	0.941	728443	0.935	995405	0.930	315236
55	0.954893822	0.938	499551	0.933	150224	0.927	802911
60	0.950067029	0.935	05209	0.930	065774	0.925	040294
65	0.945207648	0.931	412235	0.926	765674	0.922	047684
70	0.940324836	0.927	604561	0.923	273127	0.918	845937
75	0.935426033	0.923	651677	0.919	610341	0.915	455739
80	0.930517403	0.919	574022	0.915	798124	0.911	897159

- This approach cannot handle changing reservoir well stream compositions, nor gas-lift!
- May require frequent update (measurements) of feed composition and generation of new tables.

Solution methods: (2.) Recombine feed composition at actual conditions

Basis:

- An estimated fluid well stream composition
- A (tuned) equation of state (EOS) model
- A representation of the surface process

Z* [N2, CO2, C1, C2, C3...]

Step-1:

- Flash feed composition at actual conditions
- Recombine calculated oil- and gas composition to match measured oil- and gas volumes (GOR)
- Provides updated estimate of well-stream composition

Step-2:

Use updated feed composition to calculate corresponding surface process volumes

- Guarantees match of actual GOR.
- Does not guarantee match of actual densities.
- Effect of gas lift is (normally) not accounted for
- Does not guarantee accurate process rates!
- May require frequent update (measurements) of well-stream composition.

Solution methods: (3.) FluidMagic approach

→ The new solution

Do NOT recombine at the top

Data required:

- Measured actual pressure and temperature
- Measured actual oil and gas volumes/mass
- Gas-lift rates.
- Down-hole flowing pressure / reservoir pressure.
- In-situ original reservoir compositions.
- Measured actual oil- and gas densities (injection gas option)

- Do not require frequent update of the estimated well-stream composition (fluid sampling)
- Improved match of actual fluid densities.
- Includes effect of lift gas
- Allocates reservoir fluids produced (free oil-, free reservoir gas and injection gas)

Rate Conversions – Surface process calculations

FluidMagic surface process module

- Calculation of compositions & sales product quality
 - Oil composition, API
 - Condensate, LNG composition
 - Export gas composition and heating value

Representing the surface process using measured production data

By measuring this:

You can ACCURATELY represent the surface process by calculating this:

Equilibrium K-values:

$$K_i = y_i/x_i$$

Oil component recovery factors:

$$RFO_i = n_o^* x_i / (n_o^* x_i + n_g^* y_i)$$

Allows for:

- Accurate surface process calculations without complex surface process simulations.
- Easy update with changing surface process conditions / input feeds.
- Allocation by component mole/mass basis.

Summary

- FluidMagic allows for:
 - Consistent conversions from measured volumes to surface process volumes.
 - More robust methodology in terms of changing well stream compositions.
 - Requires less fluid sampling, or improved methodology when fluid sampling is not feasible.
 - Enabling reservoir fluid allocation.
 - Easy and automated update of p-T conversion tables.
 - Accurate description of the surface process, based on measured surface process compositions.