

Production Allocation of Commingled Fluids Using Geochemistry

Mohammad Ghasemi, Ph.D.

Email: mohammad.ghasemi@stratumreservoir.com

Outline

- Production Allocation Introduction
- Why Geochemistry?
- Geochemistry Input Data
- Allocation Method Description
- Production Allocation Case Studies
- Few Concerns...
- Conclusion

Production Allocation:

Quantitative determination of the contribution of individual fluid sources to a commingled production stream

Production Allocation - Introduction

The importance of Production Allocation

- Reservoir compartment/sector contribution
- The share of Company A vs B
- Reservoir monitoring
- EOR Sweep efficiency
- Failure detection (cementing, plugging)
- Production optimization (cleanout monitoring)
- Water resources contaminated

Production Allocation

Introduction

- Fluid streams in production allocation can be referred to oil, gas and water
- Commingled fluid can be from pipeline, field, reservoirs or different reservoir sectors

Production Allocation

Introduction

Our Aim:

To use **Geochemistry Data** to quantitative contribution of individual fluid sources to a commingled production stream

Why Geochemistry?

The importance

□Cost effective

- Less than 1-2% of the of Production Logging tools (PLT)
- $\circ~$ Since it's less expensive, can be run periodically
- $\circ~$ No need to shut in the well
- \circ Redundancy

□ Wider application compared with PLT

- Highly deviated wells
- \circ Unconsolidated formation
- \circ $\,$ No installation or any type of wireline services required

Main data: GC data

- Oil
 - GC-data whole oil
 - GC-MS (mass spectroscopy)
 - AKBs (alkylbenzenes in C8-C10)
- Gas
 - \succ Light components (C₁,C₂,..)
 - > Stable iso-tubes from C_1 and C_2 : $\delta^{13}C$
 - Heavy component in gas sample may not mixed linearly
 - Special consideration in gas-water system regarding CO₂

Main data: GC data

- Oil
 - GC-data whole oil
 - GC-MS (mass spectroscopy)
 - AKBs (alkylbenzenes in C8-C10)
- Gas
 - \succ Light components (C₁,C₂,..)
 - > Stable iso-tubes from C_1 and C_2 : $\delta^{13}C$
 - Heavy component in gas sample may not mixed linearly
 - Special consideration in gas-water system regarding CO₂

Composition analysis of hydrocarbons and gases or liquids.

Methods are used for separation of various components and mixtures, and relative amounts are also determined.

The carrier gas "picks up" the sample at the injection system, and applies it to the column in the GC oven.

column is 50 meters long

Sample is affected by the stationary phase on the inside of the column wall

At the same time, the travel speed of the components is affected by the temperature program in the oven, 30° to 300°C.

As a component reaches the detector, it has its own retention time.

Komponentliste fra:

ASTM D5134-98 (ASTM D 1945-03) Ca. 200 components

List of alkanes

From Wikipedia, the free encyclopedia

The following is a list of straight-chain alkanes and their common nam atoms

Methane
Contraction of the
Ethane
Propane
n-Butane
n-Pentane
n-Hexane
n-Heptane
n-Octane
n-Nonane
n-Decane
4 n-Undecane
6 n-Dodecane
8 n-Tridecane
n-Tetradecane
n-Pentadecane
4 n-Hexadecane
n-Heptadecane
8 n-Octadecane
n-Nonadecane
n-Eicosane
n-Heneicosane
n-Docosane
n-Tricosane
n-Tetracosane
n-Pentacosane
n-Hexacosane

Komponenter							
Methane		n-Heptane	2,2,5-Tm-Hexane	1,1,3-Tm-CyC6	N (10)	n-C12	n-C26
Ethane		Me-CyC6	t-1-Me-3-Et-CyC5	C9-N (6)	3-Me-Octane	C13 Group	C27 Group
Propane		c-1,2-Dm-CyC5	c-1-Me-3-Et-CyC5	2,5-Dm-Heptane	N (11)	n-C13	C28 Group
Isobutane	1,1,3-Tm-CyC5		t-1-Me-2-Et-CyC5	C9-P (1)	o-Xylene	C14 Group	n-C28
n-Butane	2,2-Dm-Hexane		2,2,4-Tm-Hexane	3,5-Dm-Heptane	1,1,2-Tm-CyC6	n-C14	C29 Group
Neopentane		Et-CyC5	1-Me-1-Et-CyC5	3,3-Dm-Heptane	N (12)	C15 Group	n-C29
Isopentane		2,5-Dm-Hexane	t-1,2-Dm-CyC6	N (1)	2,4,6-Tm-Heptane	n-C15	C30 Group
n-Pentane		2,2,3-Tm-Pentane	cc1,2,3-Tm-CyC5	C9-N (7)	N (13)	C16 Group	n-C30
2,2-Dm-Butane		2,4-Dm-Hexane	t-1,3-Dm-CyC6	C9-N (8)	P (2)	n-C16	C31 Group
CyC5	For CC used in Coophamistry Analysis					C17 Group	n-C31
2,3-Dm-Butane		JI UC USEU		alysis.	n-C17	C32 Group	
2-Me-Pentane	T	ne type of I	orogram m	E	C18 Group	n-C32	
3-Me-Pentane						Pristane C19H40	C33 Group
n-Hexane						n-C18	n-C33
2,2-Dm-Pentane	Example:					C19 Group	C34 Group
Me-CyC5	66				Phytane C20H42	n-C34	
2,4-Dm-Pentane	60 m column;					n-C19	C35 Group
2,2,3-Tm-Butane	the injector T=275°C					C20 Group	n-C35
Benzene	П	ooting progr	om. 35°C (h	old 5 minute		n-C20	
3,3-Dm-Pentane	11	Heating program: 35°C (noid 5 minutes),				C21 Group	
CyC6	3 °	3°/min. ramp to 320°C (hold for 20 minutes)				n-C21	
2-Me-Hexane						C22 Group	
2,3-Dm-Pentane						n-C22	
1,1-Dm-CyC5		ct-1,2,4-Tm-CyC5	C9-N (4)	4-Et-Heptane	C10 Group	C23 Group	
3-Me-Hexane		c-1,3-Dm-CyC6	4,4-Dm-Heptane	N (7)	1,2,4-Tm-benzene	n-C23	
c-1,3-Dm-CyC5		3-Me-Heptane	Et-CyC6	4-Me-Octane	n-C10	C24 Group	
t-1,3-Dm-CyC5		ct-1,2,3-Tm-CyC5	Pr-CyC5	2-Me-Octane	C11 Group	n-C24	
3-Et-Pentane		3-Et-Hexane	2-Me-4-Et-Hexane	N (8)	1,2,3-Tm-benzene	C25 Group	
t-1,2-Dm-CyC5		t-1,4-Dm-CyC6	2,6-Dm-Heptane	N (9)	n-C11	n-C25	
2,2,4-Tm-Pentane		1,1-Dm-CyC6	C9-N (5)	3-Et-Heptane	C12 Group	C26 Group	

GC Gas

C1 – C12+ analysis

FID – Flame ionization detector

TCD – Thermal coductivity detector

GC Oil C1 – C36+ analysis

Geochemistry Data & Data Analysis

Main data is GC data

End members: Peak ratio or peaks of each Ci

Geochemistry Data & Data Analysis

Source: Stratum Reservoir, Isotech, Mark A. McCaffrey

Simple Example

Res1

How much of **reservoir 1** does contribute to the commingled flow streams?

Real Case

	C1	C2	δ ¹³ C1	δ ¹³ C2
End Member 1	90.00	10.00	-70.00	-50.00
End member 2	80.00	20.00	-60.00	-40.00
Commingled	85.00	15.00	-65.29	-43.33

Source: Adjusted from SPE144618: Stratum, Mark A. McCaffrey et al.

Source: Adjusted from SPE144618: Stratum, Mark A. McCaffrey et al.

Real Case

	C1	C2	δ ¹³ C1	δ ¹³ C2
End Member 1	90.00	10.00	-70.00	-50.00
End member 2	80.00	20.00	-60.00	-40.00
Commingled	85.00	15.00	-66.00	-43.00

Assuming error in commingled – Isotope analysis

Source: Adjusted from SPE144618: Stratum, Mark A. McCaffrey et al.

Commingled: C1: 85%

McCaffrey et al. (2011)

$$Y = \beta_1 X_1 + \beta_2 X_2 + \dots \beta_m X_m \longrightarrow \beta = (X'X)^{-1} X'Y$$

$$\downarrow$$

$$\zeta = \beta_1 X_1 + \beta_2 X_2 + \dots \beta_m X_m + eps$$

Procedure: Assume $\beta \rightarrow \beta = (X'X)^{-1}X'Y$ Compute error in each sample point Perform linear regression to minimize the error

Scaling values for X & Y Structural Variance within data set Peak evaluation

Production Allocation Case Studies using Geochemistry

West Sack Alaska -

- We monitor well for over 26 years of production
- Our analysis indicated which zone has sand barrier and required cleaning
- Sand barrier in Sand B

Source: Jensen et al. 2016, SPE1 108445-Ms

Production Allocation Case Studies using Geochemistry

West Sack Alaska -

- We monitor well for over 26 years of production
- Our analysis indicated which zone has sand barrier and required cleaning
- Sand barrier in Sand B

A Sand B Sand D Sand Well Test Oil 2000 100% nd Drop 1800 90% Sa 1600 70% 1400 Well Test Oil Rate (BOPD) Percentag 60% 1200 50% 1000 VIocation 800 40% 600 30 400 20% 200 10% 0 0% Jan-11 Jul-11 Jan-12 Jul-12 Jan-13 Date

Tells you which sand requires cleanout

Case Study 2: shut in water injection

Case Study #2, Water Injection monitoring

- Commingling sand 2 (higher API) and Sand 3 (lower API)
- We have used more than 800 commingled samples
- Production from Sand 2 was initially supported by water injection but later shut-in

Source: SPE144618: Stratum, Mark A. McCaffrey et al.

Case Study 3: North Slope

Case Study #3, Shut-off production monitoring

- Sand1+Sand2+Sand3
- Sand 2 was shut-in 28.07.2008 to 2008.08.11
- Geochemistry analysis showed fall in Sand 2 after IsoSleeve installed
- Geochemistry analysis showed increase in Sand 2 after IsoSleeve removed
- PLT failed to indicate the contribution of Sand 1 during shut-in period of Sand 2

Case Study 4: North Slope

Blind Test Measurement

			Calculated	Actual composition of	Difference betw een	Geochemical	
	Number	Туре	Allocation	Artifical Mixutre	Calculated and	Parameters	Blind
Location	of Zones		Result	Prepared by Laboratory	Actual Composition	Used	Test?
Well NK-43	2	Oil	13.4% / 86.6%	15.0% / 85.0%	1.6%	48	Yes
Well NK-43	2	Oil	47.5% / 52.5%	50.1% / 49.9%	2.6%	48	Yes
Well NK-43	2	Oil	78.9% / 21.1%	79.9% / 20.1%	1.0%	48	Yes
Well S-26	2	Oil	68.8% / 31.2%	75.0% / 25.0%	6.20%	132	Yes
Well S-26	2	Oil	46.1% / 53.9%	50.0% / 50.0%	3.90%	132	Yes
Well S-26	2	Oil	20.9% / 79.1%	25.0 % / 75.0%	4.10%	132	Yes
Undisclosed Alaska A	2	Oil	65.1% / 34.9%	66.5% / 33.5%	1.4%	209	Yes
Undisclosed Alaska A	2	Oil	87.1% / 12.9%	87.85% / 12.15%	0.75%	209	Yes
Undisclosed 0140	2	Oil	48.0% / 52.0%	50.1% / 49.9%	2.1%	40	Yes
Undisclosed 0140	2	Oil	51.5% / 48.5%	50.2% / 49.8%	1.3%	40	Yes
Undisclosed 0140	2	Oil	50.5 %/ 49.5%	49.9% / 50.1%	0.6%	40	Yes
Undisclosed 1053	2	Oil	90.4% / 9.6%	91.4% / 8.6%	1.0%	171	Yes
Undisclosed 1053	2	Oil	59.9% / 40.1%	59.6% / 40.4%	0.3%	171	Yes
Undisclosed 1053	2	Oil	87.2% / 12.8%	86.4% / 13.2%	0.8%	171	Yes
Undisclosed 1053	2	Oil	45.4% / 54.6%	44.3% / 55.7%	1.1%	171	Yes
Undisclosed 1053	2	Oil	60.2% / 39.8%	59.9% / 40.1%	0.3%	171	Yes
Undisclosed 1053	2	Oil	70.9% / 30.4%	70.2% / 29.8%	0.7%	171	Yes
Average error of allo	cation of 2	-zone	artifical mixtures of oils in this ta	ble:	1.8%		
Undisclosed 1100	2	Gas	50.6% / 49.4%	50.0% / 50.0%	0.6%	8	No
Undisclosed 08834	3	Oil	60.2% / 39.8% / 0%	64.5% / 35.5% / 0%	4.3% / 4.3% / 0%	158	Yes
Undisclosed 08834	3	Oil	33.5% / 46.7% / 19.8%	39.1% / 40.9% / 20.0%	5.6% / 5.8% / 0.2%	158	Yes
Undisclosed 08692	3	Oil	49.2% / 28.9% / 21.9%	48.1% / 29.7% / 22.2%	1.1% / 0.8% / 0.3%	93	Yes
Undisclosed 08692	3	Oil	12.9% / 17.2% / 69.9%	10.8% / 19.7 % / 69.5%	2.1% / 2.5% / 0.4%	93	Yes
Undisclosed 0140	3	Oil	10.0% / 31.0% / 59.0%	15.0% / 29.9% / 55.1%	5.0% / 1.1% / 3.9%	40	Yes
Undisclosed 0140	3	Oil	54.0 %/ 15.0 %/ 31.0%	55.0% / 15.1% / 29.9%	1.0% / 0.1% / 1.1%	40	Yes
Undisclosed 48345	3	Oil	28.3% / 30.5% / 41.2%	31.0% / 29.9% / 39.1%	2.7% / 0.6% / 1.1%	138	Yes
Undisclosed 48345	3	Oil	20.1% / 22.2% / 57.7%	19.6% / 20.4% / 60.0 %	0.5% / 1.8% / 2.3%	138	Yes
Average error of allo	cation of 3	-zone	artifical mixtures of oils in this ta	ble:	2.0%		
Undisclosed 0140	4	Oil	10.0% / 18.0% / 29.0% / 43.0%	10.0% / 19.9% / 29.8% / 40.3%	0.0% / 1.9% / 0.8% / 2.7%	40	Yes
Undisclosed 0140	4	Oil	18.0% / 25.0% / 36.0% / 19.0%	19.8% / 29.9% / 39.1% / 10.6%	1.8% / 4.9% / 3.1% / 8.4%	40	Yes
Undisclosed 0140	4	Oil	42.0% / 7.0% / 17.0% / 34.0%	40.1% / 10.2% / 19.8% / 29.9%	1.9% / 3.2 % / 2.8 %/ 4.1%	40	Yes
Undisclosed 48345	4	Oil	30.7% / 25.9% / 11.0% / 32.4%	30.0% / 30.0% / 10.0% / 30.0%	0.7% / 4.1% / 1.0% / 2.4%	137	Yes
Undisclosed 48345	4	Oil	30.0% / 43.1% / 7.7%/ 19.2%	26.3% / 43.7% / 12.7% / 17.2%	3.7% / 0.6%/ 5.0% / 2.0%	137	Yes
Undisclosed 48345	4	Oil	9.6% / 10.3% / 39.1% / 41.0%	10.0 % / 10.0% / 40.0% / 40.0%	0.4% / 0.3% / 0.9% / 1.0%	137	Yes
Undisclosed 48345	4	Oil	21.0% / 26.9% / 22.7% / 29.4%	20.3% / 29.5% / 20.0% / 30.2%	0.7% / 2.6% / 2.7% / 0.8%	137	Yes
Average error of allocation of 4-zone artifical mixtures of oils in this table:					2.3%		
-					-		

Source: SPE144618: Stratum, Mark A. McCaffrey et al.

Few Concerns...

Important

- If end members are similar in their profile, the resulted contribution factor could be erroneous
- It's important to assure less contaminated end-members using BHS samples
- End members using cutting-extract may be contaminated with the extraction-solvent
- If one end members is contaminated with another end-members:

- It is not possible to solve the allocation problem if end-members are not possible
- It's important to select the right-end members prior to analysis- PCA (principal component analysis)

Conclusion

in summary:

- All blind test proof measurement confirms the use of Geochemistry analysis for production allocation purpose.
- The Geochemistry production allocation is much less expensive compared with PLT, so it can be run frequently through the life of reservoir.
- The production allocation using geochemical analysis can be ran in highly deviated wells where PLT tools cannot be performed.
- The method of allocation with geochemistry can solve many issues in terms of failure detection, wellbore monitoring, EOR activities.
- All case studies shown in this presentation prove the successful implementation of geochemistry analysis in production allocation.
- The correct use of end-members is important can have a significant effect on the contribution fractions.

Any Question?

