
 
 

 

 

 

Data-driven Modelling for Condition-based Monitoring and Flow Regime 

Prediction in Flow Systems 

 

Behzad Nobakht, TÜV SÜD National Engineering Laboratory 

Yanfeng Liang, TÜV SÜD National Engineering Laboratory 

Gordon Lindsay, TÜV SÜD National Engineering Laboratory 

Sandy Black, TÜV SÜD National Engineering Laboratory 

 

  

1 INTRODUCTION 

 

Digitalisation strategies are now commonplace throughout manufacturing and engineering 

sectors. A major driver for this has been the fact that end-users now have a wealth of 

diagnostic data available to them from digital transmitters associated with a wide variety 

of devices installed throughout facilities. The data can be accessed in real time, for 

example, through OPC (Open Platform Communications) servers or stored in a database 

for future analysis. The vast amounts of data now being collected requires intelligent 

software to deliver analytics solutions and allow end-users to make better use of the data 

which they own.  

 

The technical detail behind such strategies will vary between applications and organisations 

due to priorities, business needs and indeed due to differing interpretations of the word 

‘Digital’.  However, for metrology purposes and in particular flow measurement, there are 

typically three key areas of interest to end-users: data analytics, condition-based 

monitoring (CBM) and predicitive analytics. In data analytics, both historical and real-time 

data can be analysed to uncover complex patterns and trends in primary and secondary 

flow measurement instrumentation and related back to physical processes and events. 

Through data-driven modelling, a faciliy’s data can be used to replace inefficient ‘time-

based’ calibration and maintenance schedules with ‘condition-based’ monitoring (CBM) 

systems which can remotely determine facility process conditions [1], detect fraudulent 

activity in custody transfer scenarios and meter calibration drift without the need for 

unnecessary manual intervention which is costly and time consuming for operators. In 

addition, specialised flow visualisation devices such as X-Ray tomography based systems 

can output data to which models can be applied to provide end-users with detailed insights 

as to the flow conditions within their multisensor system. Predicitive analytics embraces 

and expands upon the machine learning algorithms developed for CBM, and when fully 

realised and developed through the use of high resolution data sets allows end-users to 

forecast meter calibration requrements, erosion and corrosion [2] impact on flow meter 

functionality and even flow pattern development.  

 

However, any flow application wishing to emabrace such concepts will be different with 

respect to physical layout, sensor availalblity and data resolution.  This  means that in 

order to develop CBMs and predicitive models which are useful and reflective of reality it 

is vital that experienced flow measurement engineers consult on model development and 

commissioning. In doing so, one effectively programmes into the model the collective 

experience of a facility’s operators and its individual components. 



Data acquisition in multisensor systems has grown into a significant source for diverse 

research and industrial areas, where mainly non-invasive and non-destructive 

examinations are needed [3]. An automated multisensor pipeline equipped with several 

sensors can output measurements simultaneously for industrial applications [3]. These 

sensors record key process factors in the form of both structured and semi-structured time 

series data. The data-driven models fed by these complex temporal data can then unleash 

different levels of information and aid in production optimisation. 

 

In addition, a high resolution of faulty records allows the development of a reliable 

predictive model that can detect deviations from normal conditions, and if possible, identify 

the root cause of deviations. However, there might be practical limitations in generating 

real-world faulty events in flow measurement laboratories. Training data-driven models 

with insufficient data will lead to poor predictive performance, known as the data sparsity 

problem [4] 

 

To overcome these limitations, synthetic data are widely employed to produce data that 

have not been observed in reality.  Synthetic data preserve inter-relationships in data and 

reflect the statistical properties of real data to generate sufficient training data for data-

driven algorithms. 

 

Although many machine learning approaches have been used in multisensor systems, this 

field still faces many technical challenges [5]. Some challenges originate from 

measurement operations in continuous and uncontrolled environments, whilst some are 

unique to different sensors [3, 5]. Here we list several categories of challenges faced in 

data-driven modelling of flow measurement multisensor systems: 

 

Data quality: Poor quality data displayed in the shape of missing values, highly correlated 

time series, duplicate data, numerous non-informative parameters, and outliers can cause 

significant challenges in the deployment of machine learning models in big data 

applications [6]. Statistical methods including imputation, outlier detection, dimensionality 

reduction, signal processing and data transformations enhance data quality. 

 

Lack of standardised benchmarks for model evaluation: This is crucial when building 

a foundation for unsupervised/supervised data-driven diagnostics.  

 

Feature extraction: Multisensor systems regularly generate a large amount of 

heterogeneous data in structured or unstructured formats. These data can contain complex 

inter-sensor relationships, time-dependent patterns and/or spatial correlations. Given the 

complexities in such multivariate data structures, it is hard to distinguish deviations from 

these relationships. Different conditions may have similar characteristics, making it 

challenging to build unique connections between features and conditions. 

 

Computational costs: Training complex AI/deep-learning models for multi-dimensional 

data is resource-intensive and requires scale-up server configuration. This problem 

escalates in online learning systems, where models are updated continuously as more data 

streams become available [5]. 

 

Infrastructure: The data-driven approach from raw input data to predictive outputs 

requires a robust hardware infrastructure throughout the entire system’s pipeline to 

perform high-speed processing of large volumes of information.  This is due to the fact that 

intensive convolution operations and fully connected layers (vector-matrix multiplications) 

require efficient memory communication between both graphics processing units (GPUs) 

and central processing units (CPUs). In addition, optimisation strategies should be in place 

to distribute the workload of a program among different hardware resources [7]. 

 

Consequently, building such systems requires diverse skill sets, domain-specific 

knowledge, and a powerful processing unit to produce reliable analytics. The multivariate 



time series models not only need to learn the temporal dependency in each variable but 

also require encoding the inter-correlations among different pairs of time series [8]. 

 

This paper therefore discusses research recently undertaken by TÜV SÜD National 

Engineering Laboratory (NEL) to develop application and device specific data-driven models 

which can provide accurate predictions as to the state of a given system. Two case studies 

are presented herein. The first details multiphase flow regime prediction by using 

probabilistic modelling of X-ray tomography data. The second focusses on the development 

of a data driven CBM system for a Coriolis-based metering system designed to detect 

undesirable operating conditions using real and synthetic data. 

 

 

2 MULTIVARIATE TIME SERIES MODELLING 

 

In univariate time series modelling, the goal is to predict a variable's behaviour exclusively 

based on information contained in its historical values. As a result, a univariate time series 

X={x1, x2, ..., xt} can be described as a sequence of measurements (xis) collected over time, 

where t signifies the length of the time series X. Conversely, multivariate class of models 

explain variations in a variable by referencing changes in current and past values of other 

variables. 

 

There are now extensive applications of time-series modelling in modern industrial sectors, 

thanks to the wide range of sensors now available in instrumentation and machinery. For 

a classification task, the most intuitive feature extraction approach is to calculate the 

means, variances and other statistical properties of signals [9] and then use an algorithm 

such as Random Forest (RF) to predict classes. Basic signal statistics such as mean and 

standard deviations of time-series were previously used as selected features for activity 

recognition [10]. However, this simple approach has limited application in real-world 

scenarios where statistical features cannot represent the total characteristic of high 

dimensional, non-numerical, or seasonal data. 

 

For many real-world problems, the data may represent a considerable temporal correlation, 

i.e. correlation within each record of a time series. Autoregressive (AR) models capture 

temporal correlation by employing a linear function of the previous observations plus 

random noise [11]. Since AR models predict each variable by all explanatory variables, 

including itself during previous time windows, they are a genuine starting point for the 

extraction of temporal dependencies and are already used broadly in applied research [11, 

12]. However, these models are unable to handle a large amount of data with a high degree 

of nonlinearity or nonstationarity, because, autoregressive models, including nonlinear 

additive ones, make strong assumptions about stationarity and noise models in the time 

series [13, 14]. 

 

In a case where the characteristics of time series data change over a long period of time, 

or the input signals show unstable “noisy” behaviour, it will be difficult to estimate proper 

model parameters. This limitation indicates that the characterisation process of features 

by AR models can lead to poor predictive performance [13]. More importantly, the 

computational efficiency of such models is a significant barrier when applied in real-world 

scenarios [15]. In recent years, autoregressive models are embodied in Deep Neural 

Network models (DNNs) to circumvent the said limitations [16, 17]. In Deep 

AutoRegressive Networks (DARNs), successive deep hidden layers entail autoregressive 

connections, which allow for a fast solution to the model parameters [17]. 

 

 

2.1 Automated Multivariate Feature Learning 

 

Multivariate time series learning becomes more challenging as the number of temporal 

variables that describe the data grows. In addition, conventional machine learning and 



feature engineering methods are not powerful enough to capture the complex temporal 

and spatial patterns observed in multisensor data [18]. 

 

Progress in computational processing power and advances in Deep Learning algorithms 

have enabled automated feature encoding from the multivariate time series data. Different 

types of Neural Networks (NN) models have been widely used to learn temporal dynamics 

in a fully data-driven manner [18, 19]. Neural Networks can simultaneously extract 

information from multiple variables through multiple layers and identify associations 

between variables [19]. This advantage has led to a variety of state-of-the-art neural 

networks models that support both temporal and spatial guidance. 

 

 
 

 

 

 

Recurrent Neural Networks (RNNs) can process a time series step-by-step to encode 

sequential information in the time domain [18]. Apart from time series forecasting, RNN 

were rarely employed in time series classification [20]. A type of RNNs, known as Long-

Short Term Memory (LSTM) networks, can maintain information in memory for longer. 

Although LSTM can model temporally dependent data, the correlation between different 

subsamples may require a convolutional layer [20, 21]. 

 

Convolutional Neural Networks (CNNs) employ convolution operations by sliding filters 

across the time series where the filters work as a generic nonlinear transformation of a 

time series [22]. In 1D convolutional networks (Conv1D), the filters operate only on one 

dimension (time), ignoring spatial structure that might exist between features. In addition, 

Convolutional operations have a faster training time than LSTM [23]. 1D convolutions are 

also employed in Temporal Convolutional Networks (TCNs) to hierarchically capture 

relationships at different time scales [24]. The feature learning process in TCN first begins 

with low-level feature encoding using CNN that extract spatio-temporal information. Then, 

the encoded low-level features are passed to a classifier that learns high-level temporal 

characteristics. Thereore, TCNs present a unified approach to learn all two levels of 

information hierarchically. 

 

A 2D convolution is required to learn both temporal and spatial structures. [25] introduced 

ConvLSTM layers for video-based action recognition. ConvLSTMs learn the internal 

representation of data through 2D convolutions while memorising short-term and long-

term dependencies using LSTM cells. ConvLSTM networks hold convolutional structures 

which allow them to outperfom Fully-Connected LSTM neural networks [22, 25].  

 

A 3D Convolutional layer can encode both temporal and spatial structures within the time 

series. [26] used 3D Convolutional neural networks (Conv3D) to capture motion 

information encoded in multiple adjacent frames. [27] proved that that 3D CNN can better 

extract spatio-temporal features than 2D CNN. 

 

Fig. 1 - Temporal (left) and spatio-temporal (right) guidance in a 2D array 

of features V and time steps t 
 



It is also possible to represent the inter-correlations among different pairs of time series 

in the form of signature matrices. Signature matrices evaluate the pairwise inner-product 

of two time series to capture shape similarities and correlations within each segment. Since 

turbulence at particular time series has little influence on the signature matrices, they are 

robust to signal noises. Previous studies by [8] and [28] demonstrated that calculating 

signature matrices for multivariate time series are crucial to characterise the system status 

at different scales.  

 

In this work we extensively evaluated classification tasks by using only temporal guidance, 

spatio-temporal guidance without signature matrices, and spatio-temporal guidance with 

signature matrices. 

 

 

3 CASE STUDY 1: FLOW REGIME PREDICTION 

 

To identify flow structures, an X-ray 2D and 3-phase computed tomography (CT) device is 

used within NEL’s multiphase facility for mixtures of gas, oil and water flows at low 

pressure. Then, fraction measurements of the 3-phase versus time are generated from the 

X-ray tomography device's digital output. The sum of the phase fractions must equal one, 

which therefore implies that in theory only two of the three phase fractions need to be 

measured. The project aimed to predict flow regimes based on time-varying fluid fractions 

of each X-ray tomography and void fractions throughout 32 sections of the pipe. The 

multivariate time series data are then fed to classification models. 

 

In this study, we extensively studied the use of 3D convolutional neural networks 

(Conv3Ds) along with multi-scale signature matrices where convolutions infer both 

temporal and spatial characteristics from data. The learned features were then used to 

classify fluid flow regimes. The main objectives of this case study were: 

 

1) Demonstrate the potential of Conv3D against current state-of-the-art approaches. 

 

2) Highlight the importance of signature matrices in multivariate time series 

prediction. 

 

3) Compare the impact of feature encoding by temporal guidance, spatio-temporal 

guidance, or no guidance. 

 

3.1 Experiments 

 

The data consisted of 182 samples of gas, oil and water fractions’ time-series data for 

annular, bubble, intermediate, and stratified flow regimes. The instantaneous processed 

data over a 3-minute timeframe from the X-ray were collected for each sample. The test 

samples were taken at 40 Hz and made up of approximately 7000 time-steps (~3-minute 

timeframes).  

 

To create an out-of-sample test set, we withheld the last 30 % (~ the last 54 seconds) of 

each sample aside and used it for the final evaluation of the models. This was a crucial 

consideration for testing the generalisability and performance of each model against an 

unseen test set. The remaining 70 % of data was used for training and validation such that 

training data to validation data ratio is 7 to 3. 

 

Our data was imbalanced, meaning that it contained a different number of samples for 

each flow regime. For instance, there were more samples available for the intermediate 

flow regime than for the bubble flow regime. We made use of the Synthetic Minority 

Oversampling Technique (SMOTE) to generate synthetic samples for inadequate classes 

(i.e. oversampling) [29] to make sure that an equal number of flow regime samples were 

given to our models. After oversampling,  we used a sliding window with 50 % overlap to 



split up each sequence into subsequences of length 512. This gave us a total of 6508 

training samples and 1532 test samples. Note that the test samples were kept aside before 

the oversampling was applied. 

 

In this experiment, we examined four configurations in terms of temporal and spatial 

guidance:  

 

(1) No guidance: We used an RF algorithm that ignored the temporal and spatial 

structures of multivariate time series, i.e., the expected model remained the same 

regardless of the order of features in temporal and spatial domains. The baseline 

RF model used four statistical properties including mean, standard deviation, 

skewness and kurtosis over the time domain for each time series. 

 

(2) Only temporal guidance: Conv1D and TCN models were used to apply convolution 

only in the temporal domain. The models require 3D input of size M*S*N where M is 

the number of samples in each batch, S is the length of sequences in each sample 

and N is the number of features. 

 

(3) Spatio-temporal guidance using input signals: the models had to provide guidance 

in both the temporal and spatial dimensions. We used ConvLSTM and Conv3D 

models fed with the 5D input of size M*R*L*N*C where R is the number of 

subsequences, L is the length of each subsequence, and C is the number of 

channels (C=1 in this case).  

 

(4) Spatio-temporal guidance using signature matrices: The models used signature 

matrices to encode spatio-temporal correlation. We named these models TCN_sign 

ConvLSTM_sign and Conv3D_sign as they use TCN, ConvLSTM and Conv3D 

encoders, respectively. The models were fed with the 5D input of size M*F*N*N*C 

where F is the number of frames, and C is the number of channels (C=3 in this case 

as signature matrices are calculated at three different scales). 

 

In addition, all the neural network models used regularisations, including dropout, batch 

normalisation layers, maximum pooling and the hyper-parameters selected by optimal 

performance on the validation set. The RF model with no guidance could be used as a 

baseline model to evaluate the influence of encoding temporal and spatio-temporal 

information. 

 

The Proposed model is a 3D Convolutional Neural Network fed with signature matrices 

(Conv3D_sign). The network inputs are concatenated signature matrices with three 

different lengths (w = 64, 32, 16) at each time step t. Initially, a 3D convolutional filter is 

applied to time frames (temporal domain) and signature matrices (spatial domain). Then, 

a series of regularisation techniques, including batch normalisation, maximum pooling 

layer, and spatial 3D version of dropout, are used to deal with overfitting. Then, the 

resulting output is given to another 3D convolutional layer, followed by batch 

normalisation, maximum pooling and spatial dropout. Finally, the last layer is a dense layer 

with softmax activation that predicts class distribution.  

 

We trained the network using Adam optimisation with a batch size of 64. In all training 

phases, we used a validation set corresponding to 30 % of the training set. Therefore, the 

optimal values of the model's hyper-parameters were chosen based on the classification 

F1 score on the validation set. All the studied neural networks models have been 

implemented in the deep learning framework TensorFlow [30]. 

 

 



 
 

 

 

 

Table 1 displays average model performance on the out-of-sample test set over five 

repeated experiments. Four evaluation metrics are reported, including F1 score, Cohen's 

kappa [31], recall and specificity, and corresponding standard deviations. Our baseline RF 

model had an average F1 score of 0.918, and a kappa value of 0.885. It is noteworthy that 

both Conv1D and TCN models with temporal guidance performed worse than the RF model, 

implying that by extracting basic signal statistics we better represent time-series features 

than by applying a 1D convolution to the temporal domain. Moreover, encoding spatio-

temporal information through the Conv3D model improved the predictive power of the 

model. Finally, we observed a significant improvement in predictive power for models that 

use signature matrices and spatio-temporal guidance. On average, the models TCN_sign, 

ConvLSTM_sign and Conv3D_sign had a F1 score of 0.9558, 0.9258 and 0.9711, 

respectively. As can be seen from Table 1, our proposed Conv3D_sign model outperformed 

all other models by making the most of both spatial and temporal information within 

signature matrices. 

Fig. 2 – The proposed Conv3D_sign model: The network input is 64 frames 

of 3 signature matrices and the output is probabilities for each flow regime 



TABLE 1 - Comparison of Predictive Performance, Average Score ± One 

Standard Deviation, for Case Study 1 

Model F1 Kappa Sensitivity Specificity Guidance 

RF 0.9184 ± 

0.0028 

0.885 ± 

0.0038 

0.9184 ± 

0.0028 

0.974 ± 

0.0009 

No 

Guidance 

Conv1D 0.8629 ± 

0.0149 

0.8075 ± 

0.0206 

0.8629 ± 

0.0149 

0.9549 ± 

0.0049 

Temporal 

TCN 0.8999 ± 

0.0124 

0.8569 ± 

0.0175 

0.8999 ± 

0.0124 

0.9645 ± 

0.0047 

Temporal 

ConvLSTM 0.8902 ± 

0.0162 

0.8456 ± 

0.0219 

0.8902 ± 

0.0162 

0.9653 ± 

0.0051 

Spatial and 

Temporal 

Coonv3D 0.9362 ± 

0.0142 

0.9093 ± 

0.02 

0.9362 ± 

0.0142 

0.9798 ± 

0.0042 

Spatial and 

Temporal 

TCN_sign 0.9558 ± 

0.0175 

0.9367 ± 

0.0251 

0.9558 ± 

0.0175 

0.9855 ± 

0.0065 

Spatial and 

Temporal 

ConvLSTM_sign 0.9258 ± 

0.0404 

0.8952 ± 

0.0552 

0.9258 ± 

0.0404 

0.9765 ± 

0.0129 

Spatial and 

Temporal 

Conv3D_sign 0.9711 ± 

0.0109 

0.9583 ± 

0.0159 

0.9711 ± 

0.0109 

0.9904 ± 

0.0049 

Spatial and 

Temporal 

 

 

In summary, our findings in this case study were as follows: 

 

1. In multivariate time-series modelling, multi-scale signature matrices provided a 

substantial amount of information for both temporal and spatial feature learning. 

 

2. 3D Convolutional neural networks outperformed current state-of-the-art 

approaches in multivariate time series classification. 

 

3. Through comparing the impact of feature learning by temporal guidance, spatio-

temporal guidance, or no guidance, we demonstrated the contribution of spatio-

temporal characteristics in multi-sensor systems. 

 

 

4 CASE STUDY 2: DATA DRIVEN MODELLING IN DETECTING AN ERROR IN A 

CORIOLIS FLOW METER 

 

This case study aimed to demonstrate the necessity of synthetic data generation when 

faulty occurrences are expensive or impossible to obtain in real life. We attempted to 

anticipate real-world failures using synthetic faulty data to help data-driven models learn 

the system’s normal behaviour and distinguish anomalous events. 

 

The data consisted of 2,000 samples where each sample had 100 observations, resulting 

in a total of 200,000 observations with the data evenly divided into 2 classes – ‘normal 

condition’ and ‘faulty condition’. The data from the normal class came from real field data 

output by a Coriolis flow meter during a normal ‘healthy’ operating condition. The data 

representing the ‘faulty’ condition consisted of synthetic data generated to mimic a specific 

recurring fault which was known to the operators and present within a limited sample set 

of real field data, which they were able to provide. Specifically, the fault condition resulted 

in a distortion in the inlet and outlet pick-up sensors of the Coriolis meter.  

 

In order to find the optimal model in detecting a known error in a Coriolis flow meter, six 

classification models - random forest (RF), stochastic gradient boosting (GBM), decision 

tree (Tree), naïve bayes classifier (NB), neural network (NN) and k-nearest neighbours 

(KNN) were trained and built using real and synthetically generated faulty data. 



The data was divided into 70 % training data, through which the models learnt the 

patterns, trends and correlations within variables associated with ‘normal’ and ‘faulty’ 

conditions. The models’ prediction capability was then tested against the remaining 30 % 

of the data. Fig. 3 illustrates the performance of the models based on the training data 

measured against the range of Cohen’s kappa values. It was observed  that RF and GBM 

performed best by obtaining an average kappa value of 0.97 and 0.96 respectively. Note 

that the range of kappa value was obtained by retraining the models 5 times with random 

starting points. Each model’s hyperparameters were selected by maximising optimal 

performance on the validation set. The black dot in Fig. 3 represents the median kappa 

value.  

 

 
Fig 3: Kappa values for different models based on training data. 

 

To validate the model’s performance, each model was then tested using the 30 % validation 

data, where the performance of the model was measured by various metrics. From the 

results in Table 2, the optimal models based on the validation data were RF, with high 

scores in all metrics, followed closely by GBM. The worst model was NB with a sensitivity 

rate of 0.53, a kappa value of 0.447 and an F1 score of 0.657.  However, it is interesting 

to note that NB had achieved a high specificity rate of 0.92.  In other words, the model 

performed well in assigning all ‘normal condition’ data into the correct group, but failed to 

perform well in detecting the ‘faulty condition’. The optimal model being defined as the one 

which performs well across the differing metrics. 

 

TABLE 2 - Comparison of Predictive Performance Against Synthetic Magnet 

Validation Data: The Values Represent Average Score ± One Standard Deviation 

Model F1 Kappa Sensitivity Specificity 

RF 0.987 ± 

0.001 

0.973 ± 

0.002 

0.987 ± 

0.001 

0.987 ± 

0.002  

GBM 0.978 ± 

0.002 

0.957 ± 

0.005 

0.973 ± 

0.004 

0.983 ± 

0.002 

Tree 0.819 ± 

0.010 

0.653 ± 

0.010 

0.783 ± 

0.014 

0.870 ± 

0.030 

NB 0.657 ± 

0.010 

0.447 ± 

0.010 

0.530 ± 

0.010 

0.920 ± 

0.010 

NN 0.933 ± 

0.007 

0.87 ± 

0.017 

0.910 ± 

0.013 

0.960 ± 

0.027 

KNN 0.831 ± 

0.001 

0.683 ± 

0.002 

0.777 ± 

0.002 

0.907 ± 

0.001 

 

 



 

The trained classification models were based on synthetically generated faulty conditions. 

To ensure that the models have the capability to be extended and applied in real-life 

situations to detect real faulty conditions, the models were then further tested on a set of  

data logged from a Coriolis meter where the meter was known to be exposed to the faulty 

condition for a period of time. The data from Coriolis meter contained 9,680 observations, 

66 % of which were logged when the Coriolis meter was known to be exposed to an error. 

Each of the models was then used to detect the error with the prediction results given in 

Table 3.  

 

TABLE 3 - Comparison of Predictive Performance Against Coriolis Meter’s Data: 

The Values Represent Average Score ± One Standard Deviation 

Model F1 Kappa Sensitivity Specificity 

RF 0.660 ± 0.024 0.383 ± 0.057 0.500 ± 0.023 0.970 ± 0.025 

GBM 0.954 ± 0.025 0.860 ± 0.059 0.969 ± 0.028 0.879 ± 0.013 

Tree 0.800 ± 0.034 0.040 ± 0.014 0.996± 0.003 0.030 ± 0.010 

NB 0.815 ± 0.030 0.154 ± 0.010 0.996± 0.003 0.121 ± 0.012 

NN 0.821 ± 0.015 0.191 ± 0.083 0.997 ± 0.002 0.152 ± 0.010 

KNN 0.811 ± 0.020 0.246 ± 0.020 0.938 ± 0.010 0.273 ± 0.010 

 

 

From the results shown in Table 3, GBM performed the best in successfully detecting the 

error within a Coriolis meter with a high F1 score of 0.954, and a kappa value of 0.86. 

Despite the fact that NN, Tree and NB had a sensitivity rate close to 1, they performed 

poorly in assigning normal condition data into the correct group as indicated by their low 

specificity rates. Consequently, GBM was chosen to be the optimal model, performing well 

across all metrics in detecting synthetically generated faulty data and real faulty data. The 

results are promising as despite the fact that the model was built using synthetically 

generated faulty data, it demonstrated the capability of extending its predictive power in 

detecting real faulty data which was output from a Coriolis flow meter during operation.  

 

 

5 CONCLUSION 

 

In this study, two significant problems in the real-time monitoring of the process industry 

were addressed: Multivariate time-series feature encoding and data sparsity.  

 

Different scenarios were examined, to explore the impact of adding temporal and spatial 

guidance to the feature learning process. It was also demonstrated that multi-scale 

signature matrices could provide a substantial amount of information for feature learning. 

In addition, 3D Convolutional neural networks were able to outperform current state-of-

the-art approaches in multivariate time series classification. 

 

The enhancement in data-driven models' predictive power when using synthetic data was 

highighted alongside an illustration of how training a model with synthetically generated 

faulty events could improve data-driven models' predictive power in CBM systems.  

 

 

 

 

 



6 NOTATION 
 
X Input time series 

M Number of samples in each batch 

S Length of sequences in each sample 

N Number of features 

R Number of subsequences 

L Length of each subsequence 

C number of channels 

F Number of frames  
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