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1 INTRODUCTION 
 
Flow meters such as ultrasonic flow meters (UFMs) and Coriolis mass flow meters 
are capable of outputting a large number of digital values from their electronic 
transmitter via fieldbus networks, which can provide information pertaining to 
meter health and process conditions.  Device measurement error can manifest as 
drifts within these digital values, which are commonly referred to within industry 
as “diagnostics”.  However, different process conditions can evoke the same 
diagnostic value drift and therefore create ambiguity for an end-user who has been 
tasked with interpreting the data.  A further challenge in interpretting digital data 
relates to the monitoring of two-phase oil and gas flow.  UFM and Coriolis flow 
meters are predominately single phase flow meters, so problem and confusion 
occur when multiphase flow is present.  This can happen, for example when the 
meters are installed in the wrong place or process conditions change such that they 
flash upstream.  The extent of impact from multiphase flow on the measurement 
accuracy of flow meters is dependent on many factors such as meter operating 
principles, manufacturer specific variations within a metering technology category,  
multiphase flow conditions, and fluid properties [1][2].  As a result, modelling work 
involving multiphase flow is generally more complex than single-phase flow due to 
its multi-dimensional characteristics, where a small change in the content of one 
phase could alter the drift patterns and correlations in multiple parameters.   
 
In a world where data is now output at high speeds and stored in large volumes, it 
is becoming ever more apparent that in order to maximise the valuable diagnostic 
information stored within the data, we would stand to benefit from the use of 
advanced modelling techniques, for example, machine learning models.  Previous 
studies (e.g., [3][4][5][6][7][8]), using historical experimental data gathered at 
the UK’s national standard for flow measurement (TÜV SÜD National Engineering 
Laboratory) have demonstrated the potential in using predictive machine learning 
models to overcome the above challenges, where these models can be used to 
classify different process conditions, based entirely on the correlations and patterns 
within diagnostic values.  Errors such as improper installation, deposition, and the 
presence of a second phase can be detected using models such as condition-based 
monitoring which increases an operator’s efficiency in the fault diagnosis process.  
However, while there are inherent advantages in simply owning high volumes of 
digital data there are further challenges to address before meaningful intelligence 
can be obtained from it.  One such challenge is processing and analysing high 
dimensionality data.  High dimensionality data, in statistics, refers to data sets that 
contain many variables, potentially leading to increased computational time for 
modelling as well as making it more challenging for the model to dissect layers of 
potentially noisy and irrelevant information and extract the most important data.  
This can potentially affect the accuracy of our predictive models as well as making 
the results less interpretable. 
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The results of two case studies are discussed in this paper, through which we will 
demonstrate the potential in using machine learning models to analyse the complex 
dynamics of multiphase flow and detect the presence of unwanted phases in a 
single phase flow.  In addition, a dimensionality reduction technique which was 
used in [9] to overcome the challenge from high dimensionality data is discussed. 
This technique provided a viable method in which we were able to enhance end-
users’ understanding of the role of diagnostic variables output from specific flow 
meters.  
 
This paper is organised as follows: in Section 2, we will discuss and compare the 
two main categories of machine learning models with their advantages and 
disadvantages.  In Section 3, we focus on one of the case studies carried out on 
data obtained from UFMs, where supervised and unsupervised machine learning 
models were used to detect and quantify the concentration of an unwanted second 
phase (gas) in a single-phase water flow.  The idea of using a dimensionality 
reduction technique in tackling high dimensionality data as well as its associating 
benefits will also be discussed in this section.  In Section 4, we will expand upon 
our findings from Section 3 by applying supervised machine learning models to 
detect the presence of secondary and tertiary phases in a Coriolis meter.  Lastly, 
we will summarise our results and key findings in Section 5.  The prediction results 
in this paper were produced in R1. 
 
 
2 SUPERVISED MACHINE LEARNING MODELS VS. UNSUPERVISED 

MACHINE LEARNING MODELS 
 
A machine learning model is a data analytics algorithm that teaches computers to 
perform tasks by learning from experience.  Effectively there are two categories, 
‘supervised learning’ or ‘unsupervised learning’, each having its advantages and 
disadvantages.  The deciding factor on which model to use is highly dependent on 
the type of data and the question that is to be addressed during data analysis.  A 
more detailed comparison between these models is given in Table 1. 
 
In this paper, classification models are used to investigate the performance of a 
UFM and a Coriolis meter when exposed to different volume fractions of secondary 
or tertiary phases.  A classification model can either be supervised or unsupervised 
and aims to segregate data into groups, however a supervised model requires the 
end-users to know what conditions the data represent so the model can “learn” 
from the data and then make predictions on another set of unseen data.  Hence, 
the model is supervised and guided through the learning process.   
 
 
 
 
 

 
1 R is a well-known statistical programming language widely used by statisticians and data scientists to 
perform data analysis and modelling.  It contains a wide variety of statistical tools and graphical 
techniques. (https://www.r-project.org/) 
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Table 1 - Supervised versus Unsupervised Learning Models 
 

Unsupervised Machine Learning 
Model 

Supervised Machine Learning 
Model 

Unlabelled data (more common to find in 
practice). For example a list of values 
from a sensor that we do not understand 
the conditions in which it was collected. 
 

Labelled data (less common to find in 
practice).  For example a list of 
values from a sensor where we 
understand and know the conditions 
in which it was collected (e.g. the 
sensor values equate to a particular 
test condition). 
 

Has input variables but no response 
(output) variables. Do not have 
predefined conditions or classes.  
 
For example, there is no information on 
the operating/process condition of the 
data, and no information on the target 
objectives.  
 

Has input variables and output 
variables. Has predefined conditions 
or classes.  
 
For example, information on the 
operating/process condition of the 
data is available, interested error 
states are logged and contains 
information on target objectives.   
 

Separate data into groups based on how 
similar or different the data points are. 
Can identify any underlying pattern. Only 
use input variables.  

Learn the pattern and correlations 
using training data. Identify 
connections between input variables 
and output variables. Variable 
selections are available.  
 

More suitable for real time monitoring due 
to its unsupervised nature.  
 

Usually takes place offline.  

Model is more complex with high 
computational cost.  
 

Model is simpler with low 
computational cost.  

Less interpretable and less accurate due 
to no response variables. 
 

Very interpretable, reliable and 
accurate.  

Example of unsupervised machine 

learning model: clustering model, 

gaussian mixture model-based model and 

anomaly detection model. 

 

Example of supervised machine 

learning model: tree-based model, 

neural network, regression model 

and support vector machine. 

 
 
On the other hand, an unsupervised model does not need such information and is 
able to segregate the data into n number of groups based on how similar and 

different the data points are from each other.  The model determines which group 
each data point belongs to without guidance from end-users, but whilst the model 

is able to categorise, user intervention will still be required during post-processing 
to establish the nature of those categories.  
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To better understand and compare the type of outputs that can be extracted from 
supervised and unsupervised machine learning models, we will look at two case 
studies. 
 
 
3 CASE STUDY 1 - DETECTING THE PRESENCE OF AN UNWANTED 

SECONDARY PHASE IN A SINGLE PHASE FLOW FOR A UFM  
 
In order to investigate the effect of two-phase flow, different percentages of gas 
were injected into TÜV SÜD National Engineering Laboratory’s single phase water 
facility.  The concentration of gas present within a fluid will affect the performance 
of UFMs (due to scattering of the signal) and the degree of impact will vary 
depending on the concentration.  Consequently, the gas injection tests carried out 
had different gas volume fractions (GVFs) ranging from 0.1 % GVF to 10 % GVF.  
Note that the measured GVFs had an average relative uncertainity value of ± 2 %, 
where the measured GVFs were then rounded to their nearest whole percentage 
for the purpose of modelling.  
 
In this paper, a supervised learning model (random forest model2 [10]) and an 
unsupervised learning model (clustering model3 [11]) were used to analyse the 
two-phase data gathered from one particular UFM, which we will refer to as Meter 
A.  Both types of model aim to segregate the data points into relevant groups based 
on the drifts seen in variables.  In this case, we are interested in using both models 
in distinguishing the percentage of gas present within the water, based entirely on 
the relationship between different variables.  From an end-user perspective, having 
the ability to predict the percentage of gas present within the water and thus the 
degree of effect on the performance of a UFM can aid in decision-making and 
maintenance processes.  A dimensional reduction method such as Principal 
Component Analysis (PCA) was also used to reduce the number of variables needed 
in order to simplify the data analysing process.    
  
Recall from Section 2 that the decision on which model to use will depend on the 
types of data available.  If we have unlabelled data (no predefined classes or 
conditions), where we only have input variables but do not have information on the 
response variable, then an unsupervised learning model would be used, where the 
data points will be segregated into subgroups based on the similarity between input 
variables.  If more than one subgroup exists, then it is indicative to end-users that 
the data set does not represent the same condition.  This approach is commonly 
used to find meaningful structure in data and perform data exploration, where 
algorithms such as clustering can automatically recognise patterns without labels.  
This type of analysis is known as pattern recognition.  
 
On the other hand, if we have a labelled data where end-users are aware of the 
types of conditions, then a supervised model can be used to predict which condition 
a data point belongs to.   
 

 
2 A random forest model is an ensemble classification algorithm which consists of many decision trees 
with “tree branches”.  At each tree branch, there exists a criterion which will separate data onto different 
tree branches with other criteria.  The data will continue to split and go through different tree branches 
until it reaches its final prediction outcome where the tree branches cannot split anymore.   
 
3 A clustering model differentiates data into groups based on how similar or different each data point is.  
It is an algorithm which will automatically detect trends, correlations and patterns in data and thus 
grouping data points which are similar together in one cluster and segregating data points which behave 
differently into different clusters.  
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To compare the different levels of insights of a supervised model versus an 
unsupervised model, for this case study, both models were used in an attempt to 
predict the presence of a second-phase in a single phase flow.  
 
3.1 Supervised Classification Model 
 
The raw unprocessed data from the two-phase test on Meter A consisted of 13,055 
observations with 55 input variables and 10 different gas levels ranging from 0 % 
to 10 % of GVF with an average relative uncertainty of ± 2 %.  Recall that these 
GVFs were rounded percentages for the purpose of modelling.  Prior to using the 
raw data to construct the machine learning models in R, the data was cleaned 
where missing values4 were removed from the data set.  The final cleaned 
processed data consisted of 12,286 observations.  The processed data were then 
handled as demonstrated in Fig. 1. 
 

 
 

Fig. 1 – Data Structure for Case Study 1  
 

 
4 The term “missing values” in statistics refer to no data value stored for a particular variable in an 
observation.  The presence of missing values is common in practice.  Therefore, care should be taken 
when dealing with missing values as they can have a significant impact on the conclusion made from 
your data.  Some models cannot handle missing values and thus sometimes it is compulsory to remove 
missing values prior to modelling.  
 

Raw data

13,055 observations with 
55 inputs and 10 different 

classes

Processed data  

12,286 observations 

Training and validation 
data

11,081 observations

Training data: 70% of 
11,081 observations

Validation data: 30% of 
11,081 observations

Unseen data  

Classes were removed

679 observations

Unknown data

unknown classes 

526 observations 
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For supervised classification models, it is a common practice to divide the sample 
data into: training data; where the model will learn the patterns and links between 
variables; and validation data, where the model’s prediction ability will then be 
tested. Subsequently, unseen data is used to test the model’s generalisation.  
 
The prediction results obtained on the training and validation data from using a 
supervised classification model achieved an average accuracy of 98.62 % in 
assigning 11,081 observations correctly into the right gas classes.  The model’s 
prediction ability was further tested using unseen data.  The results are shown in 
Fig. 2, where green bars represent correct predictions and orange bars represent 
false predictions. 
 

 
 

Fig. 2 – Prediction Results on Unseen Data from UFM Meter A Using Supervised 
Classification Model 

 

For example, for unseen data D, the model predicted 97.38 % of those data 
correctly to represent the condition where the fluid had 0.5 % GVF, where it 
predicted falsely 2.62 % of those to belong to other GVF groups.  Similar 
interpretations can be made on other unseen data.  It is promising to see that the 
supervised classification model had classified data in different GVF classes with high 
accuracy by finding hidden patterns and correlations associating between variables.  
Results such as these would be beneficial to end-users who wish to identify how 
much gas is present within the fluid based on drifts experienced in certain variables.  
 
From Fig. 1, it can be seen that there were 526 unknown observations where 

information on the classes of those data was not logged.  In other words, we do  
not know what operating condition those data belong to.  These unknown 
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observations were from two groups: Group A had 250 observations and Group B 
had 276 observations.  Therefore, it would be interesting to use the trained 

supervised model built previously to predict what is the most likely GVF classes 
those data belong to.  The prediction results for Group A and Group B are shown 
in Fig. 3, where, based on the drifts seen in the digital process variables, the model 

predicted Group A to represent having 0.10 % GVF with a mean probability of 
0.9084.  Similarly, Group B was predicted to represent having 0.50 % GVF with a 

mean probability of 0.8763.  The associated probability provides additional 
certainty to end-users by indicating how confident the model was in predicting the 

most likely condition the data was collected in.  
 
 

 

 
 

Fig. 3 – Prediction Results on Two Groups of Unknown Data from UFM Meter A 
Using Trained Supervised Classification Model 

 
The results shown in this section demonstrated the capability and potential of using 
a supervised machine learning model to detect the presence of an unwanted second 
phase in a UFM as well as the level of insights that can be obtained.  In this case 
study, by building a machine learning model using labelled GVFs data, not only was 
the model capable of distinguishing between single-phase flow and two-phase flow, 
it also had the capability of quantifying the most likely percentage of GVFs based 
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entirely on the patterns and correlations observed in data.  These additional 
insights will improve end-users’ fault diagnosis and rectification. 
 
3.2 Unsupervised Classification Model  - Clustering Analysis  
 
In Section 3.1, a supervised classification model was used to sort data into the 
appropriate conditions based on the learnt correlations and trends observed 
between variables; as expected, high accuracy predictions were made as a result.  
However, it is more common in practice to have unlabelled data where the response 
variable is not necessarily known.  This can sometimes be due to a knowledge gap 
in a particular process or site installation where domain expertise is limited or 
indeed due to the fact that a given site may have experienced practioners with 
extensive domain knowledge, however patterns in the data are being detected that 
do not align with the previous experiences or expectations of the site operators.   
So in other words, the questions that are to be asked of the model are what 
conditions do the data represent and how many conditions do we have?  By using 
unsupervised classification models to better explore and investigate the types of 
information our data hold, these questions can be answered.  In statistics, this 
procedure is known as exploratory data analysis (EDA).  
 
In this section, an unsupervised classification model known as the centroid-based 
clustering was used to segregate our data into different clusters based on their 
similarity and difference to identify how many possible conditions are present within 
one data set.  Our prior knowledge of this data already tells us that the data set 
should contain at least 2 clusters representing single-phase data (water only) and 
two-phase data (gas and water).  This type of modelling technique will be beneficial 
to end-users as a form of anomaly monitoring, where the presence of a second 
group could indicate the presence of an error.  Note that the data set used in this 
section is the same data set used in Section 3.1, but now with the predefined 
classes column removed to represent unlabelled data.  
 
Centroid-based clustering is an iterative clustering process where k number of 
starting points are selected at random and act as the centre of each cluster.  The 
data is then assigned to their nearest centre and form into n number of clusters.  
A new centre will get selected again and the process repeats itself until the 
algorithm converges.  The results of centroid-based clustering are therefore highly 
dependent on the selected initial starting points.  Therefore, it is best to run this 
process multiple times with different starting conditions.  In this case, our model 
had been run with 50 randomly generated starting points. 
 
Prior to feeding the processed data into the clustering algorithm built in R, the 
predefined classes column was removed from the data set to mimic an unlabelled 
data.  The processed data was then normalised to have a mean of 0 and a standard 
deviation of 1.  
 
Before going through the clustering process, Hopskin statistic (H) can be calculated 
to quickly indicate whether our data belongs to a uniform distribution.  In other 
words, does the data contain any meaningful clusters?  If H is less than the critical 
threshold value of 0.5, then we can conclude that the data does contain a 
meaningful cluster and therefore the clustering method can be used to extract 
significant information.  However, if H is greater than 0.5, then clustering analysis 
is not an appropriate technique.  For this data set, H=0.029 indicates that the data 
contains meaningful clusters and thus clustering analysis can be meaningfully used, 
as expected.  
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In centroid-based clustering, an initial guess of the number of clusters needs to be 
stated in the algorithm.  As we are dealing with an unlabelled data, this information 
is not known.  Therefore, the well-known silhouette method was used in R to 
determine the optimal number of clusters which will result in the highest average 
silhouette width. The average silhouette width measured the average within-cluster 
distances, φ(i), as well as the average between-cluster distances, θ(i).  In other 
words, how close are the points within the same group and how far apart are the 
points from different groups.  A high average silhouette width, with a small within-
cluster distance and a high between-cluster distance would indicate a good cluster.  
The silhouette width s(i) can be calculated using the following formula: 
 

 

 
 

For any data point  i є Ci  and j є Ci  , the within-cluster distance is defined as: 
 

 
 

where d(i,j) represents the distance between data point i and data point j in the 
same cluster Ci.  

 
Similarly, for any data point i є Ci  and j є Ck,  in other words, data points from 

different clusters, the between-cluster distance is defined as:  
 

 

where θ(i) is considered as the dissimilarity between data point i and its neighbour 
cluster of which i does not belong.  If s(i) is close to 1, it indicates the observations 

are well clustered, whereas if s(i) is close to 0, then observations are overlapping 
two clusters.  If s(i) is less than 0, then it is indicating that observations are being 

placed in the wrong clusters.  

���� = � ���� − 	��� max {	��� , ����} , �� |�� | > 1
                 0,                          ��  |�� | = 1. 

���� = 1|�� | − 1 � ���, �� � ,� ∈��,�≠� , 

	���  = ����≠� 1|�� | � ���, �� i∈��,� ∈��
, 

(1) 

(2) 

(3) 
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From Fig. 4, it was clear that the optimal 
number of clusters should be 2 (with an 
average silhouette score of 0.71), 
followed by 3 clusters and then 10 
clusters ranked by the average silhouette 
width.  Therefore, it is clear that the 
unsupervised model managed to 
segregate between single-phase data 
and multi-phase data.  However, as 
expected, it was challenging for the 
model to segregate between different 
percentages of gas, thus indicating 
potential data overlapping in classes.  
 
Under the assumption that this is an 
unsupervised classification model, with 
no information on the real number of 
clusters, we used the estimated optimal 
number suggested and continue with the 
clustering method.  The cluster plot is 
shown in Fig. 5 where the data has been 

transformed into a two-dimension space for easy interpretation, an approach 
known as dimensionality reduction.   

 

The advantages of this approach, 
and the insights that can be 

extracted from using dimensionality 
reduction, are discussed in more 

detail in Section 3.2.  For now, in 
this section, we focus on the results 

obtained from using clustering 
algorithms.  Note that the 

percentages shown on the x and y-
axis of Fig. 5 represent how much 

information was explained based on 
the first dimension and second 

dimension.  In other words, the 
variables used to construct the first 
dimension illustrated as the x-axis 

on Fig. 5 explained 46.2 % of the 
variances shown within the original 

data, while the second dimension, 
given as the y-axis, explained 13.2 

% of the original data.  More information with regards to the formation of the new 
dimension space is given in Section 3.2.  In summary, the percentages shown on 

the x and y-axis of Fig. 5 described 59.4 % of the total data variance. 
 
Although the unsupervised model had successfully segregated the data into two 
clusters, no information was provided to indicate the nature/condition of these 

Fig. 4 – Optimal Numbers of Cluster 

Fig. 5 – Cluster Plot for Centroid-Based 
Clustering  
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clusters.  Furthermore, the model was not able to segregate the data further into 
smaller clusters denoting different percentages of GVFs. This is why, as stated 

previously, an unsupervised learning model is often less accurate and precise than 
a supervised learning model.  One of the potential reasons as to why the model 
failed to identify 10 clusters might have been due to the high dimensionality of the 

data (11,081 x 55) thus making it harder for the model to distinguish between.  It 
was also observed in previous experiments [4] that some of the variables 

experienced the same drifts despite being collected under different conditions.  This 
would also increase the challenge presented to the unsupervised learning model.  

To overcome this, variable selection can be performed to eliminate and remove 
irrelevant and confusing variables.  This can either be done by getting experts’ 

input or performing additional variable selection modelling or performing 
dimensionality reduction. Note that variable selection is beneficial regardless of 

what types of machine learning models we are using. However, for an unsupervised 
learning model, removing irrelevant and confusing variables will significantly 

improve its prediction accuracy as well as its modelling speed, due to the fact that 
it will have less trends, correlations and patterns to recognise.  In the next section, 

we will look at the benefits of using dimensionality reduction technique in 
unsupervised machine learning models.  
 
3.2 Unsupervised Classification Model  - PCA 
 
PCA is an example of a dimensionality reduction technique based on concepts from 

linear algebra in mathematics.  The purpose of using PCA is to reduce the dimension 
of a given data set by minimising the number of variables needed to retain the 

maximum information in the original data.  Dimensionality reduction is carried out 
by using linear transformation where a set of possibly correlated variables are 

transformed into a new set of linearly uncorrelated variables known as principal 
components (PCs).  Each principal component is orthogonal to its subsequent 

principal component and independent of each other.  As a result, PCA is extremely 
useful when it comes to variables which are highly correlated with each other and 

thus resolving the problems of multicollinearity as well as transforming data with 
high dimensionality to a lower dimension, whilst retaining the maximum amount of 
information.  In addition, PCA can be used to help end-users better understand the 

relationships in variables which can help extract useful insights when working with 
unlabelled data.  

 
To demonstrate the advantages of using PCA and the type of insights that can be 

extracted from variables, let us recall that the UFM data collected consisted of 
11,081 observations with 55 variables, which is an example of a high dimensional 

data count which can benefit from dimensionality reduction.  Prior to carrying out 
PCA, it is important to check that our data does in fact consist of highly correlated 

variables.  A simple correlation plot was produced in R where it was observed that 
our data did indeed contain highly correlated variables.  As a result, PCA can be 

used in this data set.  After obtaining the required eigenvalues and eigenvectors, 
the PCA algorithm then reduced the dimensions of our data into k dimensions where 

the directions with the largest variances are considered to be the most important.  
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A scree plot (Fig. 6) was obtained 
in R to identify the number of 

principal components (shown as 
dimensions in the plot) we should 
keep so as to retain the maximum 

amount of information from the 
original data.  From Fig. 6, we can 

see that by using the first two 
dimensions, (first two principal 

components), we are able to 
explain around 59.4 % of the 

variance that occurred in the 
original data.  In other words, by 

reducing the original dimensions 
from 55 to only 9, the transformed 

data can already replicate 89.2 % 
of variability shown in the original 

data.  Although, we are ultimately 
losing some information by taking 

this approach, we have significantly reduced the number of dimensions while still 

retaining a high percentage of useful information.  The percentage of explained 
variance decreases as the dimension increases.  Therefore, variables which 

contributed and correlated to the first and second dimensions are considered to be 
the most important.  On the other hand, variables which are not correlated with 

any of the principle components or correlate with the last dimensions are variables 
with low contributions and therefore they might be removed to simplify the data 

analysing process. 
 

For end-users who are not familiar with the input variables and the role they play, 
PCA can also be used to help better understand their dynamic behaviour. A variable 

correlation plot was produced in R and is shown in Fig. 7, where different types of 
information can be extracted from such a plot. The correlation plot had grouped 

variables which shared the same traits and behaviour within the same cluster.  The 
number of clusters was determined using the previously mentioned silhouette 

technique.  Therefore, generally speaking, the input variables portrayed ten 
different types of behaviour.   
 
 

Fig. 6 – Scree Plot 
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Fig. 7 – Variable Correlation Plot Grouped By Groups   
 

Visualisation such as Fig. 7 can quickly enable end-users to identify which variables 

share the same traits as others.  Variables which are positively correlated are 
grouped together (and should be colour coded the same, due to being clustered 

together) while variables which are negatively correlated are positioned on the 
opposite quadrant.  Clusters such as cluster 8 (at the 11 o’clock position) showed 

that all variables in the group were tightly correlated, whereas clusters such as 
cluster 10 (at the 3 o’clock position) were more dispersed and hence less tightly 
correlated.  The length of the arrows indicates the predictive strength of each 

variable, where the further away the variables are from the origin, the more 
important they are to the first component.  In this case, we can see that variables 

such as cross flow and symmetry were not as important as other variables for 
predicting the presence of a gas-phase.  Thus, making them less indicative in 

distinguishing between different percentages of GVF.  
 

In this section, PCA was used to reduce the dimensionality of the data, where we 
have reduced the requirement for 55 variables to explain 100 % of the variability 

of the data to only needing 9 variables to achieve 89 % of the explained variance.  
Furthermore, PCA can also be used to understand the dynamical behaviour of 

different variables and how they interact with each other.  This type of information 
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will be useful to end-users who wish to better understand their variables and 
determine which variables interact with each other.  However, it is important to 

note that it is not easy to interpret the outputs from PCA as input variables have 
been transformed into another subspace in the form of principal components. In 
situations where we have unlabelled data, there is a limited amount of insights that 

can be extracted, consequently the use of data exploratory techniques such as PCA 
could provide additional insights into the interactions between different variables 

when exposed to different process conditions. 
 

Although there are modelling techniques that can be used to handle unlabelled 
data, it is clear from Section 3.1 and Section 3.2 that supervised machine learning 

models are more reliable, where insights are more meaningful and interpretable.  
Due to the nature of unlabelled data, there is a limited amount of actionable insights 

that can be extracted and expert’s inputs are often required to further “translate” 
the results output by unsupervised models.   

 
 
4 CASE STUDY 2 - DETECTING THE PRESENCE OF AN UNWANTED 

MULTIPHASE FLOW IN A CORIOLIS METER  
 
In this section, we look at another case study that was carried out on a Coriolis 
meter with multiphase flows, to investigate the possibilities of applying similar 

modelling techniques as already discussed to enhance our understandings on the 
impact of multiphase flow on the performance of a Coriolis meter.  

 
The data used in this section was obtained from another experiment conducted at 

TÜV SÜD National Engineering Laboratory,  where a Coriolis meter which was 
installed in the multiphase flow loop while being operated under different 

multiphase flow conditions which consisted of different GVFs and water cut (WC) 
percentages ranging at various flow rates.   As a result, the data can be categorised 

into 4 groups – “oil”, “oil and gas”, “oil and water” and “oil, gas and water”.   
  
The ability to detect and predict the amount of water in oil is extremely useful, 

especially in the oil and gas industry.  Having the ability to predict and detect the 
level of water cut can help end-users indicate when to shut a well in order to 

optimise its efficiency.  Motivated by this, two different machine learning models 
were constructed to perform the following predictions: 

• Predict single-phase flow, multiphase flow and multicomponent flow. 
• Predict the percentage of GVF in oil. 

Similar to Section 3.1, the models were trained with 70 % of the data to learn the 
patterns, correlations and interrelationship in variables when exposed to different 

operating conditions, whereby the models’ performance and prediction capability 
were tested using the remaining unseen 30 % of the data to mimic how well they 

would have performed in predicting the said condition in the real situation.  The 
prediction results are presented in the following subsections. 
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4.1 Model 1 - Detect The Presence of a Multiphase Flow 
 

The machine learning model was built to segregate and distinguish the differences 
in data when the meter was exposed to the four conditions, namely “oil”, “oil and 
gas”, “oil and water” and “oil, gas and water”.  The trained model had an accuracy 

rate of 94.72 % and a kappa5 value of 0.92, where the model’s parameters were 
tuned and selected through maximising these measuring metrics.  The model was 

then used to predict the operating condition on the remaining 30 % of the data 
where the model was required to detect the presence of a multicomponent flow.  If 

a multicomponent flow is detected, the model is then required to further specify 
and predict the most likely phase condition amongst the choices of “oil and water”, 

“oil and gas” and “oil, gas and water”.  In other words, the model had to segregate 
the data into subgroups to indicate which data was collected in which specific 

condition.  The prediction results are summarised in Table 2, where the balanced 
accuracy6 for each phase and the overall accuracy are presented in Fig. 8.  Note 

that balanced accuracy and accuracy are not the same: balanced accuracy focused 
on the prediction capability of each group whilst the overall accuracy considered 

the general performance of the whole model when applied to the testing data.   
 

Table 2 - Prediction Results on Phase Condition  
 

 Oil (single 
phase) 

Oil and 
Water 

Oil and Gas Oil, Water and 
Gas 

Sensitivity 7 
(true positive) 

0.75 1 1 1 

Specificity 8 
(true 

negative) 

1 0.94 1 1 

 
 

 

 
5 In statistics, Cohen’s kappa [12] measures the interrater reliability.  A value of 1 indicates a perfect 
agreement between each rater.  A kappa value of 0 indicates no agreement between each rater other 
than what would be expected by chance. 
 
6 Balanced accuracy is calculated using 0.5*(True Positive Rate + True Negative Rate).  
 
7 Sensitivity = True Positive / (True Positive + False Negative). 
 
8 Specificity = True Negative / (True Negative + False Positive).  Note that 1 – Specificity will yield the 
false positive rate.  
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Fig. 8 – Balanced Accuracy for Each of the Four Phase Conditions and the Overall 
Accuracy for Model 1 

 
Note that different measuring metrics were used in this case study to help us better 
evaluate and compare the performance of the model.  As evident from the results 

in Table 2, the model has successfully predicted all data within the oil and gas 
condition and the three-component flow conditions.  Some mispredictions were 

made on the single-phase data, where the model had predicted those to be from 
the oil and water phase, hence the 0.75 sensitivity rate.   

 
Although it is important for the model to be able to detect all positive cases (faulty 

conditions), it is equally crucial that it not be overly sensitive, resulting in a high 
false positive rate, as this will unnecessarily increase the operating costs for the 

business.  The false positive rate can be calculated as “1- Specificity rate” where, 
in this case, the oil and water phase had a false positive rate of 0.06 – those data 

were in fact single-phase data. 
 
4.2 Model 2 - Detect the Amount of Gas in Oil 
 
There were 11 different GVFs conditions logged by the data, whereby the model 
required to learn and distinguish between each of them.  Note that similar to 

Section 3, the measured GVFs (with an average relative uncertainty of around ± 2 
%) were rounded to their nearest whole percentage for the purpose of modelling. 

 
This is significantly more challenging than the previous case studies as the more 

classes/conditions the model needs to learn, the more likely for the model to get 
confused as some variables could have the same drift patterns under different 

conditions.  Therefore, when handling large number of classes/conditions, more 
data is needed to ensure any subtle changes are detected and learnt by the models.  

However, in this case there was only a very limited amount of data.  Consequently, 
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the trained model based on the 70 % training data only had an accuracy rate of 
87.79 % and a kappa value of 0.86, which were lower than the previous model.  

The results from the testing data (unseen data) are given in Table 3 and Fig. 9, 
where the model’s overall accuracy rate was around 0.93. This is also lower than 
the previous model.  Note that the red highlighted areas represent when the model 

achieved a lower prediction result.  In particular, the model only achieved an 
accuracy rate of 0.75 when predicting data that was output by the meter when 

exposed to 10 % GVF, followed by a low sensitivity rate of 0.50.   
 

Table 3 - Prediction Results on GVF Percentages  
 

GVF (%) 0  1 1.5  2  2.5  4 6 8 10 15 20 
Sensitivity 

(true 
positive) 

1 0.67 1 1 1 1 1 1 0.5 1 1 

Specificity 
(true 

negative) 

1 1 0.97 1 1 1 1 1 1 0.95 1 

 

 
 

Fig. 9 – Balanced Accuracy for Each of the GVF Percentages and the Overall 
Accuracy for Model 2 

 

The poorer performance in Model 2 when predicting the GVFs is mostly due to the 

model having to learn and distinguish more classes, but with limited observations.  
The performance for Model 2 should improve if more data points can be collected 

under each GVF to ensure that all the subtle variations in variables can be learned 
when operating under different GVFs.    
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5 CONCLUSIONS AND DISCUSSIONS  
 
This paper discussed the use of different machine learning models to detect the 

presence of an unwanted two-component flow in a UFM and a two-component and 
three-component flows in a Coriolis meter.  Two case studies were discussed in this 

paper, detailing the modelling results obtained on each of the meter type.  Two 
main types of machine learning models, namely supervised and unsupervised 
models, were discussed and compared.  

 
A supervised learning model is often more accurate and reliable than an 

unsupervised learning model due to the fact that we have information on the 
response variable and thus we can “teach” the model which types of data belong 

to what kind of condition before it needs to carry out a prediction.  However, it is 
not always possible to have labelled data, especially in real world scenarios, where 

the data may in fact be passed through multiple logging and data storage systems 
before it is presented to the end-user.  Therefore, how do we expect the model to 

learn and predict an error when we do not even know what the error is or even 
how many errors we have?  An unsupervised learning model can be used to extract 

potentially useful information from the data despite not having information on the 
response variables.  This type of model will learn the correlations, patterns and 

trends by itself and segregate the data into n number of conditions based on what 
is observed.  The computational cost associated with an unsupervised learning 

model is therefore higher than a supervised model.  The information obtained from 
an unsupervised learning model is often used for data exploration purpose to help 
end-users better understand the dynamics of the data as well as indicating potential 

anomalies within the data.  However, the prediction accuracy from an unsupervised 
learning model is often lower compared to a supervised learning model as we do 

not have information on the response variables, which also makes it harder for 
end-users to interpret the meaning of each cluster.  

 
Case Study 1 looked at the two-phase fluid flow historical data gathered from a 

UFM, where different percentages of gas were deliberately injected into the fluid in 
an effort to investigate the subsequent effects on meter performance.  Two types 

of machine learning model were used in this case study where we aimed to predict 
the percentage of gas present within the fluid based entirely on the correlations 

and interactions between variables.  The models mentioned here will be beneficial 
to end-users in monitoring and determining whether a second-component is 

present within the fluid, where such a scenario could severely affect the accuracy 
of the flow measurement data produced by the flow meter.  
 

The original two-component data obtained from the UFM was cleaned and scaled 
where rows and columns with missing values were removed.  The data was then 

split into three different parts: training set, validation set and unseen data.  The 
supervised learning model learnt the patterns, trends and correlations from the 

training data before being validated and tested against several sets of unseen data.  
An average prediction accuracy of 86 % was achieved for predicting the correct 

percentage of gas present within the fluid, where one data set had a prediction 
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accuracy of 99 %.  This type of prediction can help end-users in decision-making 
processes relating to determining the severity of gas effects on meter output data. 

 
The response variables column was then removed to mimic the situation where we 
have unlabelled data.  This set of data was then fed into an unsupervised learning 

model constructed in R, where the model had successfully identified more than one 
group of conditions exist within the data.  If this was used in practice as a 

monitoring and fault detection procedure, then it would be a clear indication to end-
users that there are some anomalies within the data especially if the data should 

only represent one group, such as a normal operating condition. Although, in this 
case, the unsupervised model was not able to identify exactly what each cluster 

represents, it still provides helpful information which can aid the decision-making 
process.   

 
The two-phase data consisted of 55 variables which can be challenging for models 

to digest and sieve out noisy information.  As a result, a dimensionality reduction 
technique, namely PCA was used to reduce the dimension of the data by 

transforming them into a new subset represented as principal components.  As a 
result, the transformed data only consisted of 9 dimensions whilst retaining 89 % 
of information shown in the original data.  

 
In Case Study 2, similar modelling techniques were used and extended to a Coriolis 

meter, where two different models were trained to classify different phase 
conditions, namely “oil and water”, “oil and gas” and “oil, gas and water” as well 

as predicting the percentages of GVFs the unseen data sets were operating in.  Each 
model had an overall prediction accuracy rate of 95 %, and 93 %, accompanied by 

a high sensitivity rate and a low false positive rate.   
 

In this paper, machine learning models were used to enhance our understanding 
of multiphase flow and its effect on the performance of flow meters.  They were 

used due to their ability to digest and dissect complex interrelationships in multiple 
variables as well as being able to extract hidden patterns, correlations and subtle 

changes when changing operating conditions which would have been hard to pick 
up by human observation techniques.  For example, it would not have been possible 

to perform manual trend analysis via supervisory control and data acquisition 
(SCADA) screens for the amount of data that was produced during the experiments 
discussed in the case studies.  A well-trained machine learning model can apply 

what it has learned to detect targeted conditions with high certainty.  In addition, 
machine learning models are not affected by a large number of variables, as they 

have the ability to rank variables in the order of importance and therefore neglect 
redundant variables automatically.   

 
Results from Case Study 2 demonstrated the capability and the potential of using 

machine learning models to detect, with high confidence, the presence of a 
multiphase/multicomponent flow as well as predicting the amount of water and/or 

gas present within the oil.   
 



Global Flow Measurement Workshop 
25 - 27 October 2022 

 
Technical Paper  

 

20 

The dynamics of multiphase flow and its impact on flow meters is a complicated 
process which is often dependent on multiple factors.  In this paper, data-driven 

models and advanced modelling techniques have demonstrated the potential 
capabilities of helping end-users better understand the digital ‘diagnostic’ data 
output by flow meters with respect to their bespoke installations and therefore this 

is a further step in enabling condition-based monitoring on a larger and more 
agnostic scale.  Future research within TÜV SÜD National Engineering Laboratory 

will continue to explore the potential and capability of generalising data-driven 
models to apply in wider applications.    
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