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1 INTRODUCTION 

Access to well rates forms the basis for both reservoir and production optimization. 

Nevertheless, continuous access to accurate well rates is not commonplace. Rather, 

intermittent information is often available through well testing. Virtual Flow 

Metering offers a supplement to well testing where software solutions estimate well 
rates in between well tests. However, many current Virtual Flow Meter (VFM) 

solutions are commonly calibrated manually based on the well tests. Consequently, 

the outcome from a VFM assumes that the well behavior remains stable in between 

recalibrations. This constitutes a significant drawback since the well rate estimates 

will not be reliable when the flowing characteristics of the well changes. 

In this paper, we present a self-adjusting VFM concept which continuously updates 

itself based on existing sensor data. In addition to improved accuracy throughout 

the life of a well, this reduces the need for manual interventions and facilitates less 

frequent well testing, as well tests are rather used for validation than direct 

calibration. 

2 METHODOLOGY 

2.1 General 

In this work, we address an approach to Virtual Flow 
Metering where physics-based simulations are key to 

the solution. Simulations may, when required, be 

augmented with Machine Learning (ML) models, 

resulting in a hybrid solution [1]. An underlying 
physics-based simulator is, however, always part of 

the solution. 

To simulate the behavior of a well, boundary and 

operational parameters are required input. The 

upstream boundary constitutes the reservoir inflow, 
often represented by an Inflow Performance 

Relationship (IPR). The downstream boundary is a 

known pressure measurement, e.g., a pressure 

measurement downstream of the production choke or 
a known flowline pressure. In addition, information 

about operational setpoints is required, like choke 

openings, gas lift rates, and ESP frequencies, see 

Figure 1. 

For such a simulation model, well tests provide reference data, which can form the 

basis for calibration of the fundamental physical closures in the simulator. 

Furthermore, these reference rates can be used to calibrate the IPR. Here, it is 

important to understand that there is a significant difference between these two 

 

Figure 1 Illustration of 

sensors representing 

boundary conditions and 
operational set-points used 

to drive the physics-based 

simulation model for a VFM. 
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types of calibration; the calibration of physical closures represent properties which 
are stable over longer periods whereas the IPR represents reservoir properties 

which may change fast and frequently. 

2.2 Self-Adjustment 

If we consider a well from reservoir inflow to a position 

downstream of the production choke, additional 
sensors are often available along the path, as 

illustrated in Figure 2. 

Pressure and temperature sensors are common, but 

any sensors which represent physical properties 
addressed by the simulation model can be 

incorporated, e.g., phase fraction meters. For any 

such sensor within the realm of the simulation model, 

the equivalent output from the simulation can form 
basis for self-adjustment of the reservoir conditions 

and fluid properties. 

Using the simulation model in conjunction with an 

optimizer, minimizing the deviation between the 

measured and simulated data for the additional 
sensors indicated in orange in Figure 2, reservoir 

parameters can be determined without a need for 

reference flow rates. This leads to an always up-to-

date representation of the well, and, thus, accurate 

well rate predictions. 

2.3 Hybrid Modeling 

The self-adjustment outlined above is attractive but still has its challenges. Firstly, 

there may be a shortage of available sensor data. To determine the unknown 
reservoir properties, sufficient sensors measuring independent parameters must be 

available. For an under-determined optimization problem, it will not be possible to 

uniquely determine the unknown parameters. Secondly, even if sufficient sensors 

are available, the problem may be of such a character that physics and 

mathematics alone cannot determine all unknown parameters accurately. 

For example, we may consider a situation where the water cut exceeds 95%. While 

it is possible to determine the gas and total liquid flow rates accurately using 

pressure and temperature sensors, the differences in oil and water properties are 

commonly too small to accurately determine the oil/water split. When oil makes up 
a small fraction of the total liquid, an insignificant error in the water cut has a 

significant effect on the predicted oil rate: A water cut deviation of 1 percentage 

point results in 20% relative error in the oil rate. For such a situation, physics-

based modeling can be augmented with machine learning to form a hybrid solution 

and offer a means to determine 3-phase well rates [1][2]. 

In the case where available sensors along the modeled flow path are insufficient, 

machine learning can offer a means to utilize other sensors to provide the 

information required to close the system. The additional sensors can be on the 
same well, e.g., parts of the gas lift system not included in the model or mechanical 

sensors on an ESP which can be converted into useful insights. Additional 

 

Figure 2 Illustration of 
additional sensors (orange) 

beyond boundary conditions 

and operational set-points 
(green) used to drive self-

adjustment of the reservoir 

inflow parameters in a 

physics-based simulation 

model for a VFM. 



Global Flow Measurement Workshop 

25 - 27 October 2022 

 

Extended Abstract 
 

3 

information can also be deduced from sensors connected to other, similar wells 

within the same asset, so-called transfer learning [1]. 

3 CASE STUDY 

In this case study, Virtual Flow Metering is deployed 

to deliver three-phase flow rates for wells on an aging 

asset on the Norwegian Continental Shelf. The default 
sensor configuration illustrated in Figure 3 offers a 

good starting point and should suffice to deliver 

three-phase well rates, however two common 

challenges for aging assets are relevant in this case: 

malfunctioning sensors and high water cuts. 

For wells with all sensors functioning, a purely 

physics-based solution is capable of accurately 

determining the gas and total liquid flow rates, see 
Figure 4. This may, however, be difficult in the case 

of a malfunctioning sensors. Under such 

circumstance, machine learning (ML) models can 

serve to synthetically generate required input data 

based on other sensors. 

 
Figure 4 VFM predictions of gas and total liquid flow rates for a well with all sensors working. 
Self-adjustment is purely based on physics-based simulations. Field well test measurements 

are shown as circles. 

Figure 5 illustrates the gas and total liquid rates for a well with malfunctioning 

sensors. The sensor data alone are not sufficient to deliver accurate gas and total 
liquid flow rates, however once augmented with synthetic data from machine 

learning, good accuracy can be achieved as shown. 

 

             

   

                                       

 

Figure 3 Illustration of the 

typical sensor configuration 

for wells on the asset. 

 

 

 

  

 

        



Global Flow Measurement Workshop 

25 - 27 October 2022 

 

Extended Abstract 
 

4 

 
Figure 5 VFM predictions of gas and total liquid flow rates for a well with malfunctioning 

sensors. Self-adjustment is based on physics-based simulations augmented with synthetic 

data from machine learning models. Well test field measurements are shown as circles. 

Above, we have demonstrated successful predictions of gas and total liquid flow 
rates. To go from two-phase to three-phase predictions, accurate estimates of the 

water cut are required. The determination of water cut based on physics and 

mathematics alone can be considered accurate within a few percentage points, and 

for very high water cuts this implies an unacceptable uncertainty on the oil rates. 

Here, machine learning models which incorporate basic physical relations through 

feature engineering provides a means to accurately predict the water cut. The 

inclusion of physics through feature engineering also ensures some extrapolation 

capabilities, which in turn means that the model remains valid in between well 
tests. To maintain the best possible accuracy, the ML models are retrained after 

each approved well test. When combined with physics-based simulations, this 

results in a VFM which can deliver 3-phase well rates at required accuracy, see 

Figure 6. 

 
Figure 6 VFM predictions of gas, oil, and water flow rates for a well with all sensors working. 

Self-adjustment of gas and total liquid flow rates is purely based on physics-based 
simulations, see Figure 4, while the water cut is determined by machine learning models.  

Field measurements are represented with markers. 
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4 DISCUSSION 

Virtual Flow Metering has been developed, tested, and deployed for decades [3]. 

Various solutions have attracted an increased interest with increasing access to 

sensor data, and the capabilities have even further increased with the entry of 

machine learning. However, there are still unresolved challenges, particularly in 

terms of maintenance and reliability. Whether based on first-principles physics or 
machine learning algorithms, regular recalibration/retraining is required, which 

often requires manual intervention. In this work, we have presented how a self-

adjusting hybrid solution, which combines first-principles physics with machine 

learning, increases reliability and reduces the need for human intervention. 

A Virtual Flow Meter (VFM) can deliver continuous well rates based on data from 

existing sensors. This can act as a supplement to well testing and offer continuous 

insights in between well tests. For assets with highly transient well behavior, we 

have demonstrated that a VFM combined with intermittent well testing can replace 
the need for continuous well flow measurements with maintained understanding of 

the well performance [2]. For assets already employing intermittent well testing, a 

reliable VFM solutions can extend the time in between well tests, and by that reduce 

both operational expenditure and deferred production. 

With the self-adjustment methodology outlined in this work, where the VFM utilizes 
additional sensors to self-adjust and maintain accuracy, reference well rate 

measurements are no longer primarily for calibration, but rather a means for 

validation. In that, the presented approach is well suited to be deployed side-by-

side with multiphase flow meters (MPFM) in case of failure. 

It is important to emphasize that deviations between VFM predictions and field 

measurements do not necessarily mean a less accurate VFM solution, but may 

rather be an indication that attention is needed. Deviations may, e.g., be caused 

by drifting sensors, equipment operating outside their calibrated range, or changes 
in well performance. Furthermore, by proactive deployment of model components 

such as machine learning models to compensate for malfunctioning sensors, the 

solution offers fallbacks and will seamlessly deliver insights even if sensors fail. 

Finally, by incorporating a physics-based simulator at the core of a VFM, the 
potential reach of the solution extends far beyond real-time well rates. Access to 

the underlying simulation model facilitates additional workflows on top, such as 

operations support and production optimization. One example is the possibility to 

run what-if scenarios to investigate how changes in operational setpoints impact 

operations ahead of their implementation. This in turn can facilitate optimization 

to, e.g., optimize use of gas lift and maximize utilization of limited resources. 

Another use-case is to gain insights into flow assurance challenges such as the 

onset of water breakthrough, impending liquid loading, risk of solids deposition, 

etc. When preconfigured, automated, and combined with alerts, this caters for 

operational excellence. 
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5 SUMMARY 

In this work, we outline a self-adjusting VFM solution based on a hybrid technology, 

combining a first-principles physics-based simulation model and data analytics, and 

its successful deployment on an aging oil field on the Norwegian Continental Shelf. 

We demonstrate that such a solution provides accurate predictions of three-phase 

well rates even at very high water cuts (exceeding 95%), and we also show how 
machine learning makes it possible to compensate for failing sensors. A comparison 

between predictions from the deployed hybrid VFM solution and intermittent well 

tests confirms that the predicted rates are within 10%. 
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