

Small details, big impact

Practical examples of commercial and technical drivers in allocation

Marta Szwangruber, Aker BP

To barrel or not to barrel...

- BOE
- OE
- Which unit did you express the tariff basis in in your last agreement?
 - 1 Sm³ water [BOE] = 0 MJ
 - 1 Sm³ water [OE] = 1 Sm³
 - 1 Sm³ water [OE in barrels] = 6.29 bbl
- ...or did you forget water in your tariff agreement?

Who will pay the water bill?

- Tariff per redelivered oil and gas volumes, not throughput
- Water production can vary gravely across fields
- WLR of a stream becomes considerable with field's age
- Processing of produced water is resource-demanding
 - One of the highest specific heat capacity of any liquid on Earth
 - Temperature of well streams from same reservoir can span over 80°C
 - Major driver of electrical power consumption: heating and injection

Example:

	Sm ³	OE	OE in bbl	Water Liquid Ratio	
Oil export	150 000	150 000	943 500		
Gas export	35 000 000	35 000	220 150	65%	
Prod. water	280 000	280 000	1 761 200		

	Sm ³	OE in bbl	Tariff 1	Invoice 1	BOE	Tariff 2	Invoice 2
Oil export	150 000	943 500	15 NOK/ bbl	14 152 500	943 500	15 NOK/ BOE	14 152 500
Gas export	35 000 000	220 150		3 302 250	277 713		4 165 695
Prod. water	280 000	1 761 200		26 418 000	0		0
SUM [NOK]				43 872 750			18 668 040

Allocated values Gas: 35 000 000 Sm³ A cube is not just a cube... 150 000 Sm³ Sm³ Sm³ Sm³ Sm³ Diff **BOE** Diff normalized enriched with @ 820 Cru volume value **NGL** kg/Sm³ to 40 GCV to 55 GCV 277 713 0% 42 475 213 Gas 307 377 +11% Gas 34 190 711 +2% Oil 153 65 966 512 Oil +25% 1 179 375 +25% 1 Sm³ oil 40 000 MJ 35 500 MJ 1 Sm³ o.e. gas Image source: Wikipedia 35 500 MJ ≠ 40 000 MJ Hydrocarbon Management Workshop 2024

Electrical power allocation

Detailed vs. simplified calculations

Component Oil Recovery Factor simulation

Ref. Folgerø, K., et al. (2021, Oct 25-29) Influence of fluid compositions and process parameters. NSFMW 2021: Tønsberg, Norway.

Component Oil Recovery Factor simulation

Process

CORF vs. component lumping to C6p

Observations¹

- Both fluids:
 - Temperature-dependant
- Fluid A (oil-dominant):
 - Most sensitive to 1st separator temperature for both C80 and C6p, slightly amplified dependency with C6p
 - Iso-butane becomes minorly dependant on 2nd sep. pressure
 - Increase in sensitivity to 1st separator temperature
 - Pentane: twofold
- Fluid B (gas-dominant):
 - Most sensitive to 2nd separator temperature for C80
 - Most sensitive to 1st separator temperature for C6p
 - Increase in sensitivity to 1st separator temperature
 - Butane: fourfold
 - Pentane: fivefold

Daily gas values due to CORF

Fluid A (oil-dominant)

Daily gas values due to CORF

Fluid B (gas-dominant)

Conclusions and last thoughts

- Nomenclature and precise formulation in commercial agreements is key
 - allocation procedure, deferral, tariff, OPEX, ...
- CORF: proper input and QC of simulation results extremely important
 - Be aware of differences in gas- and oil-dominant streams dependencies to process conditions when considering allocation systems based on simulations
- Allocation professionals: the devil is not in all of the details, so think cost/benefit!
- Commercial professionals: involve allocation experts to solve that Rubik's cube as early as possible!

